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Multiple distinct learning processes are known to contribute to

sensorimotor adaptation in humans. It is challenging to identify

and characterize these multiple processes, however, because

only their summed contribution can typically be observed. A

general strategy for decomposing adaptation into its

constituent components is to exploit their differential

susceptibility to specific experimental manipulations. Several

such approaches have recently emerged which, taken

together, suggest that two fundamental systems operate

together to achieve the adapted state: one system learns

slowly, is implicit, is temporally stable over short breaks, is

expressible at low reaction times, and its properties do not

change based on experience. The second learns rapidly, is

explicit, requires a long preparation time to be expressed, and

exhibits long-term memory for prior learning.
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Introduction
A common experimental approach to studying human

motor learning is to impose a systematic perturbation

while subjects perform a simple movement such as a

point-to-point reach. For example, a force field may be

applied to the hand [1] or visual feedback might be

rotated about the origin of the movement [2]. Human

subjects readily eliminate the errors induced by such

perturbations, usually regaining near-baseline levels of

performance within 50 trials or so. Although a seemingly

straightforward behavior, a wealth of evidence now

suggests that the capacity to adapt to perturbations is
www.sciencedirect.com 
supported by multiple distinct processes acting in par-

allel. Early theories posited the existence of multiple

processes underlying learning [3,4]. However, whereas

these early theories assumed that these processes were

qualitatively similar (for instance, all depending on the

same error signal), growing evidence now suggests that

they are in fact qualitatively distinct.

A clear understanding of the multi-faceted nature of

adaptation is critical both for investigations into the

neural basis of learning and in order to best leverage

adaptation for therapeutic purposes. In practice, however,

identifying and characterizing the many processes that

contribute to sensorimotor adaptation is challenging since

only the summed contribution of all components can

typically be measured. A general strategy for solving this

problem is to dissociate learning into sub-components on

the basis of their having particular contrasting properties

that can be independently measured and/or render them

susceptible to manipulation.

Empirical decomposition of motor adaptation into

component processes has significantly improved our

understanding but has also raised new questions. Do

component processes compete or cooperate during a

learning task? Can task conditions favor some compo-

nents over others? Do empirical decompositions align

with theoretical distinctions between potential learn-

ing rules (e.g. supervised learning versus reinforcement

learning)? Here, with a focus on sensorimotor adapta-

tion for reaching movements, we will attempt to ad-

dress some of these questions. Specifically, we will

discuss three recent experimental approaches that have

isolated components of visuomotor adaptation through

exploitation of differences in their dependence on

explicit awareness, their need for preparation time,

and their capacity for retention. We also consider

how components isolated by these experimental

manipulations relate to previous theoretical and empir-

ical dissections of adaptation.

Empirical decompositions of motor
adaptation
Awareness: explicit versus implicit

Most motor adaptation experiments to some degree en-

gage subjects at an explicit level. The effects of a per-

turbation are often very obvious and frustrating and

subjects will attempt to eliminate the errors by any means

possible. Yet much of the compensation that occurs in

such paradigms occurs through implicit mechanisms that
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operate outside of subjects’ awareness and cannot seem-

ingly be modulated by explicit knowledge. The relative

contributions of explicit and implicit processes becomes

apparent when a perturbation is removed: subjects per-

form significantly better in the first trial after a perturba-

tion is removed if they are aware that the perturbation

will be removed, compared to if it is removed unexpect-

edly [5,6,7��,8]. Measuring the effect of such explicit

instructions allows behavior to be decomposed into two

components: one explicit component that can be easily

disengaged in the light of knowledge, and one compo-

nent that cannot and is therefore presumed to be implicit.

This basic approach can be employed at various time

points during learning to track the relative contributions

of implicit and explicit components [6,9].

A more direct determination of the relative contributions of

explicit and implicit processes to adaptation was recently

achieved in an experiment by Taylor and colleagues [7��].
Subjects were exposed to a 458 visuomotor rotation. They

were also asked to declare, prior to each reach, which

direction they intended to aim their movement. These

aiming locations served as a direct measurement of the

explicit component of learning, while the amount their

actual reach deviated from the declared aiming location

revealed the contribution of the implicit component.

These dual measurements of subjects’ behavior revealed

that explicit and implicit processes operate in parallel

throughout adaptation. Explicit contributions were large

and exploratory early in learning. With further exposure to

the perturbation, explicit contributions reduced in ampli-

tude as the implicit contribution increased. Although ask-

ing subjects to choose and declare an explicit strategy for

solving the perturbation might seem somewhat unnatural,

net learning rates and aftereffects exhibited by these

subjects were very similar to those seen in subjects who

had no aiming targets or instruction. Thus probing explicit

contributions on each trial did not qualitatively alter the

canonical time course for adaptation, suggesting that these

findings may be representative of learning in more con-

ventional paradigms.

The ability to simultaneously measure both implicit and

explicit components builds on previous work that isolated

the implicit component of learning by instructing subjects

explicitly how to counter an imposed visuomotor rotation

[10,11,12�]. This approach has established that implicit

learning is driven by sensory prediction errors and is

indifferent to task success. Furthermore, it is known to

be cerebellum-dependent [13] and can be abolished if

feedback about movement kinematics is provided only

after the movement has ended [12�].

Preparation time: rapidly-expressible versus time-

consuming

Another means by which adaptation can be decomposed

is according to the amount of preparation time each
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component might require. Reaction times are known to

increase during adaptation to a visuomotor rotation

[14,15��]. Fernandez-Ruiz and colleagues [15��] showed

that this increase in reaction time is causally related to the

rate of learning; subjects who were forced to move at very

low reaction times showed significantly slower learning

relative to control subjects. The critical role of prepara-

tion time appears to be specific to some components of

learning but not others. In an experiment by Haith and

colleagues [16��], preparation time was varied on a trial-

by-trial basis during adaptation to a 308 visuomotor rota-

tion by unexpectedly switching the target location shortly

before movement initiation in a subset of trials. Early in

learning, subjects exhibited larger errors in trials in which

preparation time was limited, compared to normal trials

immediately before or after. This transient reversion

towards baseline during trials with limited preparation

time suggests that some component of learning could not

be expressed when preparation time was short. After

further practice, subjects performed comparably well in

both trial types, suggesting that the component requiring

little preparation time accounted for most of the observed

adaptation later in learning. Importantly, the effect that

limiting preparation time has on expression of learning

does not appear to be specific to adaptation to a visuo-

motor rotation; reducing reaction time through startle has

a similar effect on expression of adaptation to either

visuomotor [17] or force-field [18] perturbations.

Decomposition according to preparation time requirements

suggests parallels with the decomposition obtained on the

basis of an explicit/implicit duality. One component (the

high RT and the explicit) dominates early in learning, while

the other component (the low RT and the implicit) learns

more slowly but dominates later in adaptation. It is therefore

tempting to conclude that a prolonged preparation time is

required in order to apply an explicit strategy [15��]. One

cannot, however, rule out the possibility of a component of

learning that is implicit yet requires a prolonged preparation

time, or an explicit component of learning that can be

expressed rapidly. More direct comparisons between the

effects of awareness and preparation time will be necessary

to determine whether they are dissociable.

Retention: stable versus decaying over time

Adaptation occurs very rapidly, but is also forgotten

rapidly. If errors are removed during adaptation — either

by withholding feedback, or by artificially constraining

errors to zero — behavior begins to revert or decay to-

wards baseline [19,20,21�,22–24]. Earlier theories of ad-

aptation posit that it is comprised of two or more

components that are qualitatively similar (driven by the

same error signal) but which have different rates of

learning and decay [3,4]. More recent work, however,

has established that adaptation can decay in two distinct

ways: either as a function of the number of movements

made [24,25], or with the passage of time [22,24,26,27].
www.sciencedirect.com
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It has been suggested that these contrasting modes of

decay might relate to distinct components of learning.

Patterns of retention seen 24 hours after initial learning of

a force field are consistent with only a single component

of learning being partially retained [26]. More recent

studies have shown that adaptation decays over far shorter

timescales than 24 hours; most of the decay in fact occurs

within just 1 minute [27]. The amount of residual learn-

ing after such breaks gradually increases with practice,

suggesting that it corresponds to a separate slower com-

ponent of learning that has greater temporal stability.

These findings therefore support the existence of two

distinct components of learning that can be dissociated

based on their differential susceptibility to decay with the

passage of time.

The two components identified here resemble those

discussed above in that one component seems to domi-

nate early on (in this case the one which is not retained

over time) but gives way to the other component later in

learning (the temporally stable component). Notably,

prior learning does not appear to be completely forgot-

ten after a one-minute break; subjects are able to regain

their prior level of performance within just two to three

trials after the break [27]. Therefore, the apparent decay

in learning over time is perhaps better interpreted

as a transient failure to express this component of

learning — paralleling the expression failure seen

when reaction time is limited and consistent with the

flexible engagement of the explicit component of learn-

ing. It seems plausible that the reason for the drop in

performance is that subjects forget to apply a previously

successful explicit strategy until reminded to do so

when they experience an error in the first trial after

the break.

Mapping global properties of adaptation onto
subcomponents
The three approaches described above each offer a means

to empirically decompose overall behavior into different

sub-components based on either differences in conscious

awareness associated with each component, differences in

the amount of preparation time required to express each

component, or differences in the retention properties of

each component across short breaks. Taken together,

these findings demonstrate the existence of at least

two components of learning that differ qualitatively. A

consequent challenge is to understand how these compo-

nent processes contribute to or are responsible for fea-

tures of learning that have so far only been characterized

at the level of overall learning. We discuss two specific

aspects of behavior in adaptation experiments that high-

light how our understanding can be enriched by coupling

existing insights with a decomposition approach: the role

of different learning mechanisms and experience-depen-

dent changes in learning rate.
www.sciencedirect.com 
Learning through exploration as a signature of early

learning

An important distinction in theories of learning is be-

tween supervised learning from vector errors versus rein-

forcement learning from scalar costs and rewards [28,29].

Most theories of learning have suggested that adaptation

represents a form of supervised learning based on vector

performance errors [10,30]. Even when multiple compo-

nents are posited, they are often assumed to operate in a

qualitatively similar manner [3]. It is clear, however, that

learning can occur even in the absence of vector errors —

if subjects are given only binary [29] or scalar [31] feed-

back about performance, for example. Learning from

scalar or binary outcomes is much more challenging than

learning from vector errors, since vector errors provide

critical directional information that is not available with

only scalar feedback. Consequently, with scalar feedback,

a more exploratory trial-and-error approach is necessary to

identify better motor commands [32–35]. Therefore, if

trial-to-trial variability could be shown to be directly

related to learning (rather than simply reflecting unrelat-

ed noise), it could potentially serve as a hallmark of

learning from scalar outcomes rather than vector error.

In a recent study by Wu and colleagues [36�], subjects

whose movements were more variable during an initial

baseline phase could more rapidly adapt to a perturbation

than those whose baseline movements were less variable.

Furthermore, the precise within-movement structure of

baseline variability was predictive of the rate of learning

for different types of perturbation that required different

temporal patterns of force compensation. A similar rela-

tionship between variability and learning rate has also

been noted during adaptation to a visuomotor rotation

[15��], as well as in more abstract motor learning tasks in

which only scalar feedback is provided to the subject

[36�,37]. These findings appear to recapitulate classic

observations relating learning rate and response variabili-

ty in discrete action selection settings [38,39]. Although

consistent with the notion of exploratory learning, the

exact mechanism by which variability might aid adapta-

tion is as yet unclear. In particular, it is not known

whether variability reflects a very deliberate attempt to

identify better motor commands, or whether the motor

system is simply good at exploiting improvements stum-

bled on through variability that is present for other

reasons. Either way, the ability to retain successful out-

comes and ignore bad ones is suggestive of a learning

process that is sensitive to scalar outcomes rather than

vector errors.

The type of error signal used for learning may differ across

components of learning. The existence of an implicit,

cerebellum-dependent learning process that learns from

vector errors is now well established [13,40,41]. A rela-

tionship between learning rate and trial-to-trial variability

during adaptation appears to be specific to components of
Current Opinion in Neurobiology 2015, 33:71–77
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learning that can be expressed at high preparation times

[15��]. Explicit components of learning also appear to

exhibit more exploratory behavior than implicit ones

[7��]. The presence of this apparent exploratory behavior

therefore suggests that some components of learning

(those characterized as explicit or as preparation-time-

dependent) are sensitive to scalar reward, in contrast to

other (e.g. implicit) components of learning that are

driven by vector error and appear to be indifferent to

success or failure [10]. Reward-sensitive components of

learning may also account for the differential effects of

reward and punishment on adaptation rate [42].

Savings and recall in adaptation paradigms

An important characteristic of behavior in adaptation

paradigms is that subjects exhibit long-term memory.

One form of memory already discussed is retention of

a fraction of learning from one day to the next [22,26].

Another, more flexible and longer-term form of memory is

exhibited through savings, whereby adaptation is faster

the second time a perturbation is encountered [43,44],

even weeks later [43]. While savings typically applies to

a single learn/re-learn episode, repeated experience

with a specific perturbation type can influence learning

rates more strongly [36�,45–47]. One way to quantify

learning rates is by examining the amount a subject

learns from a single exposure to a perturbation. This

single-trial learning rate is found to increase after expe-

rience in environments where imposed perturbations

tend to persist from one trial to the next [46,47]. Single-

trial learning rates even decrease following experience

with perturbations that are transient, or which tend to

reverse direction from one trial to the next [46,47].

These changes in learning rate appear to be specific

to particular error magnitudes [47] and to the particular
Figure 1
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type of perturbation encountered (e.g. velocity-dependent

or position-dependent force fields) [36�].

How do such changes in learning rate come about? One

possible explanation is that the sensitivity of error-driven

learning increases or decreases based on prior experience

[46,47]. There are, however, a number of results that are

difficult to explain with this kind of theory. First, al-

though savings is usually direction-specific [43], savings

can be achieved across opposing perturbations if the

targets are arranged such that the actions required to

solve the two perturbations are the same [28,48]. This

result can be explained by the idea that savings occurs

through recall of a previously successful action [28], rather

than an increase in sensitivity to error or recall of the

perturbation. Two recent studies have provided evidence

that changes in learning rate are brought about, at least in

part, through recall effects. In both cases, subjects who

had experienced one perturbation followed by a pertur-

bation in the opposite direction responded to this new

perturbation by directing their reach towards the action

that had cancelled the first perturbation [46,9].

It seems unlikely that a single mechanism can universally

account for all experience-dependent changes in learning

rate. Rather, many qualitatively different effects likely all

contribute to savings to varying degrees in different

scenarios. Nevertheless, several recent studies have

shown that savings, at least in some circumstances, is

attributable to a single component of adaptation that

tends to dominate early in learning. Haith and colleagues

[16��] demonstrated that savings is only seen in compo-

nents of learning that require a long preparation time in

order to be expressed. In a similar vein, savings has

recently been shown to occur in explicit but not implicit
ponent 1 Component 2
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components of learning [9]. Finally, savings seems to be

attributable to components of learning that fail to be

expressed following a 1 minute break [27]. Thus savings

appears to be associated with explicit awareness, pro-

longed preparation time, and transient failure to express

learning after a break. This suggests that these three

forms of experimental decomposition might be exposing

the same underlying single component.

Conclusions and outlook
Based on current evidence, it seems reasonable to specu-

late the existence of two fundamental components of

learning (Figure 1). The first of these components learns

slowly, is implicit, is driven by sensory prediction errors, is

stable over short breaks, is expressible at low reaction

times, and its properties do not change based on experience

(i.e. it does not exhibit savings). The second component

learns rapidly, is explicit, is sensitive to scalar outcomes (i.e.

degree of success/failure), is disengaged following a brief

break, requires a long preparation time to be expressed,

and can exhibit latent long-term memory for prior learning,

possibly through recall of previous successes.

This dualistic decomposition is likely an oversimplification.

It is possible that these processes may in turn be decom-

posable into distinct sub-processes. Some existing findings

are also difficult to explain within this particular dual-

process account. For instance, in a study by Shmuelof

et al. [21�], a brief exposure during adaptation to an envi-

ronment that promotes reinforcement learning was able to

prevent decay back to baseline. The presence of rewards

during learning is also known to promote retention better

than equivalent punishment [42]. These findings suggest

the existence of a third learning process, distinct from either

process outlined above, that is highly stable and learns from

reinforcement. Despite its limitations, we hope that the

dual-process organization of motor adaptation we have

outlined here can serve to highlight emerging phenome-

nology and stimulate a more comprehensive characteriza-

tion of the constituent processes underlying adaptation.

Although our discussion has been limited to a few specific

aspects of behavior in adaptation paradigms, decomposi-

tion of learning into constituent sub-components repre-

sents a very general strategy for understanding the nature

of learning. Many other aspects of learning continue to

offer a fruitful avenue for research, but have so far been

little explored from a multi-component perspective of

learning, including generalization [29,49–51] and inter-

ference [43,52�,53,54].

Adaptation paradigms probe a particular ability of the motor

system: how to maintain accurate calibration of movement

given a body and world in constant flux. Motor learning in

more general settings may rely on distinct mechanisms not

prominent during adaptation [55–58]. Nevertheless, we

believe that many components of learning that contribute
www.sciencedirect.com 
to adaptation may serve a more general purpose. Indeed,

many of the themes we have discussed here are recapitu-

lated across a wide variety of domains, both motor and

cognitive [59–63]. Although a valuable goal in its right, a

thorough dissection of learning behavior in adaptation

paradigms might ultimately serve a higher purpose by

providing a convenient and tractable model system through

which to study principles of learning in a dual-process

context, together with a host of accompanying experimental

innovations that may find utility beyond the domain of

motor adaptation.
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Smith MA: Temporal structure of motor variability is
dynamically regulated and predicts motor learning ability.
Nat Neurosci 2014, 17:312-321.

These authors demonstrate a relationship between variability of movement
and learning rate. Subjects with greater baseline variability learn faster in
both a force field adaptation task and a more abstract learning task.

37. Stafford T et al.: A novel task for the investigation of action
acquisition. PLoS ONE 2012, 7.

38. Skinner BF: Science and Human Behavior. Simon and Schuster;
1965.

39. Neuringer A, Jensen G: Operant variability and voluntary action.
Psychol Rev 2010, 117:972-993.

40. Izawa J, Criscimagna-Hemminger SE, Shadmehr R: Cerebellar
contributions to reach adaptation and learning sensory
consequences of action. J Neurosci 2012, 32:4230-4239.

41. Synofzik M, Lindner A, Thier P: The cerebellum updates
predictions about the visual consequences of one’s behavior.
Curr Biol 2008, 18:814-818.

42. Galea JM, Mallia E, Rothwell J, Diedrichsen J: The dissociable
effects of punishment and reward on motor learning. Nat
Neurosci (advance online publication) 2015. doi:0.1038/nn.3956.

43. Krakauer JW, Ghez C, Ghilardi MF: Adaptation to visuomotor
transformations: consolidation, interference, and forgetting.
J Neurosci 2005, 25:473-478.

44. Zarahn E, Weston GD, Liang J, Mazzoni P, Krakauer JW:
Explaining savings for visuomotor adaptation: linear time-
invariant state-space models are not sufficient. J Neurophysiol
2008, 100:2537-2548.

45. Braun DA, Aertsen A, Wolpert DM, Mehring C: Motor task variation
induces structural learning. Curr Biol 2009, 19:352-357.

46. Gonzalez Castro LN, Hadjiosif AM, Hemphill MA, Smith MA:
Environmental consistency determines the rate of motor
adaptation. Curr Biol 2014, 24:1050-1061.

47. Herzfeld DJ, Vaswani PA, Marko MK, Shadmehr R: A memory of
errors in sensorimotor learning. Science 2014, 345:1349-1353.
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