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In neuroimaging studies of human cognitive abilities, brain activation
patterns that include regions that are strongly interactive in response to
experimental task demands are of particular interest. Among the existing
network analyses, partial least squares (PLS; McIntosh, 1999; McIntosh,
Bookstein, Haxby, & Grady, 1996) has been highly successful, particu-
larly in identifying group differences in regional functional connectivity,
including differences as diverse as those associated with states of aware-
ness and normal aging. However, we address the need for a within-group
model that identifies patterns of regional functional connectivity that ex-
hibit sustained activity across graduated changes in task parameters. For
example, predictions of sustained connectivity are commonplace in stud-
ies of cognition that involve a series of tasks over which task difficulty
increases (Baddeley, 2003). We designed ordinal trend analysis (OrT) to
identify activation patterns that increase monotonically in their expres-
sion as the experimental task parameter increases, while the correlative
relationships between brain regions remain constant. Of specific interest
are patterns that express positive ordinal trends on a subject-by-subject
basis. A unique feature of OrT is that it recovers information about func-
tional connectivity based solely on experimental design variables. In par-
ticular, there is no requirement by OrT to provide either a quantitative
model of the uncertain relationship between functional brain circuitry
and subject variables (e.g., task performance and IQ) or partial informa-
tion about the regions that are functionally connected. In this letter, we
provide a step-by-step recipe of the computations performed in the new
OrT analysis, including a description of the inferential statistical meth-
ods applied. Second, we describe applications of OrT to an event-related
fMRI study of verbal working memory and H2

15O-PET study of visuo-
motor learning. In sum, OrT has potential applications to not only studies
of young adults and their cognitive abilities, but also studies of normal
aging and neurological and psychiatric disease.

1 Introduction

Perhaps it is not an oversimplification to say that in neuroimaging studies
of human cognition, it is rare to capture glimpses of the regional func-
tional connectivity of the underlying neural circuitry, particularly in stud-
ies involving H2

15O PET and event-related fMRI (Friston, Frith, Liddle, &
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Frackowiak, 1993; McIntosh, Bookstein, Haxby, & Grady, 1996; McIntosh
& Gonzalez-Lima, 1994). In cognitive neuroscience, the term functional con-
nectivity refers to the distributed nature of human information process-
ing that occurs over a scale of centimeters (DeFelipe et al., 2002; Felleman
& Van Essen, 1991; McIntosh & Gonzalez-Lima, 1994; Mellet et al., 2000),
where the term was co-opted from neurophysiologists (Gerstein, Perkel,
& Subramanian, 1978) who originally used it to describe the cooperative
firing between functionally related neurons that were grouped together on
a submillimeter scale. Although functional connectivity was intended and
is often evoked as a guiding principle for understanding brain function
(Friston et al., 1993; Horwitz, 1991; McIntosh, 1999), it bears a resem-
blance to the elusive qualities of dark matter in the astrophysicist’s present-
day universe (Abbott, 2002; Ostriker & Steinhardt, 2003). That is, interre-
gional functional connectivity and dark matter are known to be ubiquitous
in their respective sciences, but sightings are rare. What is the explana-
tion for this odd circumstance as it pertains to cognitive neuroscience?
Based on current and past neuroimaging studies of ordinary human abil-
ities, we do not know whether the apparent uncertainty we confront in
mapping regional functional connectivity reflects an inherent property of
human information processing or whether it is a property of the exper-
imental designs and statistical models we apply. Concretely, there is no
assurance that latent patterns of functional connectivity will be uncovered
using the conventional voxel-by-voxel modeling of expected experimen-
tal effects (Friston, Frith, Liddle, & Frackowiak, 1991; Friston et al., 1996;
Worsley, Poline, Friston, & Evans, 1997). Indeed, the principal authors of
the voxel-wise univariate and multivariate linear models, Friston, Worsley,
and colleagues, have been reticent to suggest otherwise (Worsley et al., 1997).
Further, McIntosh (1999) in his discourse on the need for spatial covariance
modeling and the likely empirical evidence for functional connectivity to
be derived therefrom, stops just short of asserting that latent patterns of
functional connectivity frequently will be missed by voxel-by-voxel mod-
eling. On the other hand, with the network analyses offered by McIntosh—
structural equation modeling (McIntosh & Gonzalez-Lima, 1994) and par-
tial least-squares analysis (McIntosh et al., 1996)—there is always a concern
that some misattributions of connectivity will inevitably occur. Indeed, it is
somewhat surprising that McIntosh and colleagues’ strongest evidence for
functional connectivity has come from demonstrations that connectivity is
substantially altered by graduated changes in task parameters (McIntosh,
1999), subject mind-set or state of awareness (McIntosh, Rajah, & Lobaugh,
1999), and subtle changes in neurophysiology that occur with normal
aging (Cabeza, Anderson, Houle, Mangels, & Nyberg, 2000; Cabeza,
McIntosh, Tulving, Nyberg, & Grady, 1997; Grady, McIntosh, & Craik,
2003). The question is whether this level of apparent volatility in func-
tional connectivity is an inherent property of ordinary human abilities
(Fernandez-Duque, Baird, & Posner, 2000a, 2000b), or a by-product of the
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limitations in our experimental designs and statistical modeling meth-
ods.

To address this issue, we sought to devise a different type of spatial
covariance modeling that would identify sustained functional connectivity
across graduated changes in task parameters. Our intention has been to
extend the definition of functional connectivity as it was originally applied
to individual task conditions so as to define it for experiments that consist
of parametric series of tasks conditions. The notion of sustained functional
connectivity we consider here is that in which the influence of parametric
changes between tasks is exchangeable with the influence of endogenous
variables that induce subject differences within a task. Specifically, if—within
a task—the effect of changing the level of endogenous variables is to scale
up or down the activity of the functionally connected brain regions, then
the effect of parametric changes between tasks is likewise to scale up or
down the activity in these functionally connected brain regions, albeit on
a subject-by-subject basis. In every task and subject, the scaling of activity
in the functionally connected regions is therefore determined jointly by
the experimental and endogenous variables. Based on this exchangeability
of experimental and subject variables, we designed a spatial covariance
model that can identify regional brain activations that in aggregate (i.e., as
represented by a pattern of regional weights) express a positive ordinal trend
with incremental changes in a task parameter; that is, these brain activations
increase monotonically as the experimental task parameter increases, while
the correlative relationships between brain regions remain constant. The
activation patterns of interest are those that express positive ordinal trends
on a subject-by-subject basis.

Indeed, a prediction of ordinal trends is commonplace in studies of cog-
nition that involve a series of experimental conditions over which task dif-
ficulty increases. Representative examples in the study of working memory
are the N-back (Braver et al., 1997) and Sternberg (1966, 1969) tasks. Another
example is the well-known auditory “oddball task” (Naatanen, Tervaniemi,
Sussman, Paavilainen, & Winkler, 2001), where the fraction of standard to
deviant tones is varied in a parametric manner.

Many cognitive theories presume that there is sustained functional con-
nectivity in the sense described above. For example, in his theory of verbal
memory, Baddeley (1988, 2003) describes a coalition of component pro-
cesses, including articulatory rehearsal, phonological store, and central ex-
ecutive, that is common to all individuals, and he predicts that the effect
of increasing memory load is to incrementally increase activity in brain
regions associated with these processes. The spatial covariance analysis
that we devised, which we have named ordinal trends (OrT) analysis, pro-
vides an explicit test of the assumption of sustained functional connectiv-
ity. Of course, OrT is applicable not only to studies of task difficulty, but
also to the broader spectrum of parametrically designed studies of human
cognition.
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The strategy for using the OrT analysis to test the prediction of sustained
functional connectivity is briefly the following. In a data set, OrT assigns
reduced salience, on the one hand, to latent activation patterns that express
mean directional changes between tasks that are different from the pre-
dicted ordinal trend.1 On the other hand, among the latent patterns that
express mean trends in the predicted direction, OrT assigns a different level
of salience depending on the type of task × subject interaction that a pattern
expresses. Salience is reduced in activation patterns where the direction of
the trend expressed is different for different subjects. By contrast, salience
is enhanced in activation patterns where the direction of the trend is same
in all subjects. Among the latter type of patterns, the salience assigned to
a pattern is directly related to the proportion of the total (voxel × task ×
subject) variance in the original data set that is accounted for by the pattern
and its expression. Among the latent patterns that express ordinal trends,
OrT provides an estimate of the pattern with the highest salience, quantifies
the expression of this pattern for each subject and task condition, and quan-
tifies the statistical significance of the pattern expression and the reliability
of the pattern’s voxel weights.

In this article, we discuss the feasibility of the OrT computational ap-
proach, followed by a step-by-step recipe of the computations performed in
an OrT analysis, including a description of the inferential statistical meth-
ods applied. Second, we describe applications of OrT to actual event-related
fMRI and PET data sets. We report the results from OrT analyses of two stud-
ies of ordinary human abilities: (1) an event-related fMRI study of a verbal
working memory task involving a delayed-matched-to-sample experimen-
tal design and (2) an H2

15O-PET study of visuomotor learning.
We show that the OrT analysis takes its place alongside PLS network

analysis as being only the second spatial covariance model that is specifi-
cally designed to recover latent aspects of functional connectivity in neu-
roimaging studies that involve parametric experimental designs. In short,
OrT serves as an omnibus test of sustained functional connectivity that is
performed across multiple task conditions and all brain regions (voxels).

2 Feasibility of the OrT Computational Approach

From a computational perspective, the ideal approach to identifying la-
tent patterns that express ordinal trends would be simply to multiply the
original neuroimaging data matrix by a matrix that would maximally en-
hance the salience of the target patterns, where the latter matrix is based
on the parametric design of the experiment. This approach is similar to

1 In our description of the OrT strategy for assigning salience to regional covariance
patterns, a latent pattern is any covariance pattern that is contained in the vector space
spanned by the functional images contained in a data set. Moreover, the term latent pattern
is not used in reference to a particular canonical representation of the vector space.



Ordinal Trend Canonical Variates Analysis 1607

the current canonical variates analyses (CVA) that have been designed for
analyzing neuroimaging data (McIntosh et al., 1996; Worsley et al., 1997).
In current CVAs, the task-subject × voxel matrix Y (the neuroimage data
set) is multiplied by a task-subject × design matrix X consisting of predictor
variables, after which the X′Y product is submitted to singular value decom-
position (SVD). Algebraically, the effect of matrix multiplication is always
to differentially alter the voxel × task × subject variance accounted for by
different latent patterns. In particular, matrix multiplication in the OrT anal-
ysis would be designed to selectively enhance the voxel × task × subject
variance of patterns that expressed ordinal trends and, among these latter
patterns, to produce the greatest enhancement in the pattern that expressed
the largest voxel × task × subject variance in the original data set. On this
basis, the application of principal component analysis (PCA), or SVD, to the
transformed data set could be expected to produce major principal compo-
nents that provided a good approximation to one or more patterns that ex-
press ordinal trends. In these respects, our approach builds on the current
model-guided PCA methods designed for analyzing neuroimaging data
(Petersson, Nichols, Poline, & Holmes, 1999).

Spelling out what is required by the OrT analysis made it less cer-
tain, however, that there actually is a design matrix that would guaran-
tee the identification of patterns that expressed ordinal trends. A new
design matrix had to be invented that would differentiate among three
categories of latent patterns, that is, would differentially alter the voxel ×
task × subject variance of three types of latent patents: first, discrim-
inate among patterns that expressed mean trends in the predicted di-
rection from patterns that expressed mean directional changes between
tasks that are different from the predicted trend; and second, discrimi-
nate among different types of patterns within the first category. In the first
category, the design matrix has to discriminate among patterns in which
the direction of the trend expressed is the same in all subjects from pat-
terns that express task × subject interactions in which the trend expressed
is different for different subjects. In addition, the design matrix has to
preserve the relative size of the voxel × task × subject variance accounted
for by latent patterns that express ordinal trends.

On the one hand, our computational approach is a form of CVA. On
the other hand, the previous work on CVA—as it concerns the analysis
of neuroimaging data (McIntosh et al., 1996; Worsley et al., 1997)—is not
extendable in a straightforward manner to provide a matrix solution that
satisfies the above OrT requirements. Indeed, in the extant CVA approaches,
the presumption is that a modest number of predictor variables (i.e., a low-
dimensional design matrix) will provide an adequate account of the neu-
roimaging data or, conversely, a large number of predictor variables would
likely produce mixtures of different model effects that are not interpretable.
We recognized, however, that no low-dimensional design matrix could cor-
rectly assign the appropriate salience to the three pattern categories that
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must be discriminated in the OrT analysis. In particular, a low-dimensional
design matrix would not provide the means to differentiate among patterns
that expressed the predicted mean trend but differed in the type of task ×
subject interactions. A high-dimensional matrix is required to differentiate
among patterns in which the direction of the trend expressed is the same in
all subjects and patterns that express task × subject interactions in which
the trend expressed is different for different subjects.

Our answer to the question of feasibility was a design matrix of dimen-
sion T∗N × (T − 1)∗N, where T is the number of task conditions in the
parametric series and N is the number of subjects. For the particular series
of task conditions, Ei , i = 1, . . . , T , the individual columns of the design
matrix assign unit values to one or another pair of consecutive task condi-
tions and zero to all other task conditions. For each pair of consecutive task
conditions, these assignments are made on a subject-by-subject basis. When
T = 5, for example, the OrT design matrix (Q) is a 5N × 4N matrix of the
form

Q =





IN 0 0 0
IN IN 0 0
0 IN IN 0
0 0 IN IN
0 0 0 IN




,

where for each task, IN denotes the N × N identity matrix. In other words,
tasks are ordered sequentially along the row dimension, and subjects are
repeated within each task.

This article includes the tests we have performed to evaluate the util-
ity of this new design matrix. We have applied the OrT analysis not only
to real event-related fMRI and H2

15O PET data sets, but also to data sets
simulated using Monte Carlo methods. In the Monte Carlo simulations,
the performance of the OrT design matrix was evaluated in terms of the
degree that the PCA of the transformed data set outperformed the PCA
of the untransformed data set (see the appendix). The primary aim of the
Monte Carlo computations was to verify that the target patterns that ex-
pressed ordinal trends in the simulated data sets were better estimated by
a fixed number of the major principal components of the transformed data
than by the same number of principal components of the untransformed
data. A detailed discussion of these Monte Carlo tests of feasibility is con-
tained in the appendix.

In addition, we compared the performance of the OrT method to the
performance of the conventional, low-dimensional CVA models that are or-
dinarily applied to event-related fMRI and H2

15O PET data sets. In brief,
it may come as a surprise that the low-dimensional CVA models actu-
ally performed worse—in recovering target patterns that expressed ordinal
trends—than PCA applied to the untransformed data set (Figure 8 in the
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appendix). The differences in performance are substantial. We also found
that even high-dimensional design matrices that do not contain the par-
ticular features of the OrT matrix, such as, the Helmert matrix (Venables &
Ripley, 1999), perform nearly as poorly as the conventional low-dimensional
design matrices (Figure 8 in the appendix).

Finally, we have addressed the issue of the statistical specificity of the
OrT analysis by demonstrating that the OrT design matrix achieves low
type I error rates (false alarm rates) in data sets in which the task × subject
neuroimaging data are generated using the statistics of random gaussian
fields.

In the next section, before presenting the computational recipe for the
OrT analysis and the information about its statistical specificity, we provide
one example of a Monte Carlo simulation in order to portray with simple
graphics (see Figure 1) what it means for the PCA of the OrT transformed
data set to outperform the PCA of the untransformed data set in identifying
latent patterns with ordinal trends.

2.1 First Illustration of the OrT Analysis. Consider a miniature data set
that consists of two task conditions: a control condition B and an experimen-
tal challenge condition E1 where, for purposes of visual display, each image
was limited to just two voxels. These diminutive images for 100 subjects are
displayed in a two-dimensional Cartesian coordinate system in Figure 1.
This visual display corresponds to the formal algebraic representation of
the data set as a task-and-subject × voxel matrix (Y), consisting of 200 rows
(two tasks times 100 subjects) and two columns (two voxels). Moreover,
different data points in Figure 1 represent two-voxel images for different
subjects and task conditions, where each data point corresponds to a single
row in the data matrix Y. With regard to the remainder of the Monte Carlo
simulations described in the appendix, they involve more realistic data sets
and are described using matrix notation only.

In our miniature data set, all 200 images are actually admixtures of just
two latent patterns of functional connectivity: a latent pattern that expresses
a positive trend for every subject and a second latent pattern that does not.
In algebraic notation, the OrT pattern is z1 = [1; 1], and the second, non-
OrT pattern is z2 = [1; −1], where the boldface z1 and z2 variables represent
2 × 1 column vectors. In z1, the two positive voxel weights indicate a form
of functional connectivity in which z1’s contributions to the overall activity
of voxels 1 and 2 are positive. In contrast, in z2, the voxel weights are of
the opposite sign, indicating a form of functional connectivity in which z2’s
contribution to the overall activity of voxel 1 is positive, but its contribution
to voxel 2 is negative. In this sense, z1 and z2 represent orthogonal patterns
of functional connectivity, which is represented algebraically by a zero inner
product, z1 · z2 = 0.

In this simulated data set, the group mean expression of each pattern is
configured to reveal a positive change from B to E1. Indeed, the subject
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expressions of the two patterns, z1 and z2, are configured to have the same
means and the same variances in each of the two task conditions, while
at the same time, z1 expresses a positive trend for every subject, whereas
z2 expresses a positive trend for 55 of the subjects and expresses a negative
trend for the remainder of subjects. These several features of latent activation
patterns z1 and z2 are displayed in Figure 1A, where the total voxel activity
in a data set is plotted for each task and subject (open circles). Also plotted
are the subject levels of voxel activity in the individual patterns of functional
connectivity. For z1, the circles are linearly aligned with positive slope along
the line [1; 1], and for z2, the circles are linearly aligned with negative slope
along [1;−1]. Different colors are used to distinguish task B (green) from task
E1 (red) in depicting the activity in both whole images and the individual
patterns of functional connectivity.

The details of subject pattern expression are as follows. For z1, the subject
expression values b for task B were sampled from the uniform distribution
U(0,1). The vector b is an N × 1 column vector. The expression values for
E1 are denoted as e1 and were generated as b + !, where ! also is a N × 1
random variable, sampled from U(0,1). This results in b and e1 having mean
1/2 and 1 and variance 1/12 and 1/6, respectively. For z2, b and e1 are
similarly constructed. However, the subject labels for both b and e1 have
been randomly permuted, resulting in different subjects exhibiting opposite
trends. In other words, the collection of images in the task-and-subject ×
region data matrix can be represented as an algebraic sum of the individual
contributions of the latent patterns z1 and z2:

Y =
(

b
e1

)

Target

(
1 1

)
+

(
b
e1

)

Non−Target

(
1 − 1

)
.

Indeed, it is clear from this formula that subject expression of a latent
pattern is simply the projection of the pattern onto the data set. For example,

Figure 1: Miniature data set Y involving two experimental tasks B and E1
and 100 subjects, in which each image, containing just two voxels, is an
admixture of a targeted activation pattern and an orthogonal, nontargeted
activation pattern. (A, Right) Task × subject voxel activity in Y. Activity
values due to the individual patterns are displayed as well as the aggregate
data. Different tasks are indicated by different-colored open circles: green
indicates activity pertaining to task B, red to task E1 . The blue line indicates
the major source of variance, which is also the mean difference image between
conditions found with mean contrast analysis. It is the vector average of both
targeted and nontargeted activation pattern. (A, left) Task-activity curves
for the subject expression of targeted and nontargeted pattern, shown for
a subset of 20 subjects to avoid clutter. The ordinal trend feature of strictly
monotonic curves with a high intertask correlation can be discerned for the
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Voxel 1

V
ox

el
 2

B E1

Target expression

main source of variance

Voxel 1

V
ox

el
 2

B E1

Non-target expression

(A)

(B)

Figure 1: (cont.) targeted (upper-left figure) but not the nontargeted activation
pattern (lower-left figure). (B) Subject-voxel activity in the data transformed
by the OrT matrix Q(Q′Q)−1/2 (open blue circles). Application of the OrT ma-
trix results in the same amount of variance of the open circles along the direc-
tion of the nontargeted component, but a much enlarged amount of variance
( = var(b) + var(e1) + 2cov(e, b1)) along the direction of the targeted pattern be-
cause of the high intertask correlation of subject expression. The direction of the
major source of variance ( = first principal component) is drawn as a blue line.
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for z1, the pattern expression is the inner product of the z1 vector with the
Y matrix:

(
b
e1

)

Target
= Y · z1.

A comparison between Figures 1A and 1B illustrates the considerable
impact that the OrT matrix has on the voxel × task × subject variances of z1
and z2. In particular, the comparison reveals that the OrT transformed data
set outperforms the PCA of the untransformed data set in identifying as the
first principal component the latent pattern z1 for which all subjects exhibit
a positive trend. Figure 1A shows that the patterns z1 and z2 have equal
salience and that the first principal component of the untransformed data
set is not latent pattern z1 but, rather, the vector average of patterns z1 and
z2 along the direction [1; 0], which is indicated by a blue line. By contrast,
Figure 1B shows that after OrT matrix multiplication, the patterns z1 and
z2 no longer have equal salience, and now the first principal component is
a good approximation of z1. We have used extensive Monte Carlo simula-
tions to generalize these results and establish a benchmark of the accuracy
of OrT pattern estimation. The simulated data sets and OrT performance
are described in the appendix. Monte Carlo simulations were written in
MATLAB 6.0 (Mathworks, Natick, MA) and performed on Linux worksta-
tions. Interested readers who want to learn more about the derivation and
utility of the OrT design matrix can find all pertinent information in the
appendix.

2.2 Algorithm of OrT/CVA. We now present a list of the 5 computa-
tional steps of the OrT/CVA, assuming that the neuroimaging data have
undergone sufficient preprocessing, resulting in one scan per subject per
task. (The preprocessing steps will be explained in detail in the sections
showing applications to real-world PET and fMRI data sets.) We assume
three task conditions, B, E1, E2, but our recipe can be generalized to any
number of task conditions (two or greater).

Step 1: Application of a projection operator, P, by multiplication
from the right according to YP, to eliminate strictly task-independent
effects. P is constructed from the set of 2N eigen images of the Helmert-
transformed data matrix H′Y. The eigen decomposition can be written as
Y′HH′Y W = W" with the Helmert matrix

H =




−IN IN
IN IN
0 −2IN



 .
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The matrix W contains the 2N eigen images as column vectors, and " is a
2N-diagonal matrix containing the nonzero eigen values. P is the projection
matrix of the Helmert eigen images; that is, P is the matrix WW′. The mod-
ified data matrix YP has the same dimensions as the original data matrix Y.
However, YP will contain N fewer activation patterns and has rank 2N (i.e.,
it is of lower rank than Y, which has rank 3N).

Step 2: Application of the OrT design matrix, Q, by multiplication
from the left according to [Q(Q′Q)−1/2]′YP, to increase the salience of or-
dinal trend effects. With N subjects and 3 task conditions, the OrT design
matrix consists of 2N predictor variables, where a pair of predictor vari-
ables is constructed for each subject. With the preselected ordering of tasks
B, E1 , and E2, the predictor variables for the j th subject are (1) a 3N vector
in which the entries are zero except for the j th scans for the B and E1 task
conditions, which both contain unit values, and (2) a 3N vector in which the
entries are zero except for the jth scans for the E1 and E2 task conditions,
which contain unit values. The OrT design matrix can thus be written as

Q =




IN 0
IN IN
0 IN



 .

The OrT design matrix applied to the imaging data YP is the orthonormal
version Q(Q′Q)−1/2 of the above matrix. This normalization guarantees that
all predictor variables, specifically all subjects, are equally influential in
assigning salience to latent patterns.

Step 3: Singular value decomposition is applied to the mean-centered
[Q(Q′Q)−1/2]′YP matrix. This is equivalent to applying PCA, that is,

P′Y′Q(Q′Q)−1Q′YP V = V#.

V contains 2N orthogonal eigen images as column vectors, and # is a 2N-
diagonal matrix of the eigen values.

Step 4: The first K eigen images are tested for the presence of an ordinal
trend. For the first K singular images, a 2N × K predictor array is calculated
according to [E1 − B; E1 + B − 2E2]. B is obtained by projection of all K
images onto the raw data pertaining to condition B : B = Y(1 : N, :) V(:, 1 :
K ). Likewise, for E1 and E2, we have E1 = Y(N + 1 : 2N, :)V(:, 1 : K ), and
E2 = Y(2N + 1 : 3N, :)V(:, 1 : K ). We then conduct a linear regression to best
predict the dependent variable of the regression, which is a 2N column
vector [1; 1], with the 2N × K predictor array described above:

(
1

−1

)
≈

(
E1 − B

E1 + B − 2E2

)
β.
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Table 1: Tabulation of Type I Error Rates for the Number-of-Exceptions Crite-
rion, Obtained from 10,000 Monte Carlo Simulations for 13 Subjects and 500
Regional Resolution Elements.

PC1 PC1-2 PC1-3 PC1-4 PC1-5 PC1-6

0 exceptions 0.000 0.000 0.001 0.004 0.012 0.030
1 exceptions 0.001 0.005 0.015 0.041 0.088 0.167
2 exceptions 0.011 0.038 0.090 0.176 0.291 0.432
3 exceptions 0.059 0.156 0.290 0.440 0.589 0.724
4 exceptions 0.209 0.409 0.591 0.739 0.844 0.916
5 exceptions 0.533 0.730 0.856 0.925 0.966 0.985
6 exceptions 1.000 1.000 1.000 1.000 1.000 1.000

In other words, the regression is a type of discriminant analysis that pro-
duces the linear combination of the K eigen images according to V(:, 1 : K )β
whose mean expression changes maximally across task conditions. For the
test of significance of the ordinal trend, we compute the task-subject scores
for this new linear combination image according to the right-hand side
of the above regression equation. The test of significance is based on the
minimum number of exceptions to a perfect segregation of these contrast
scores, which is an inverse correlate to the maximum number of subjects
who exhibit monotonic task-activity curves.

Monte Carlo methods are used to calculate the type I error rate of ordinal
trends based on the minimum number of exceptions to a perfect segregation
of scores. Table 1 illustrates the type I error based on (1) fixing in advance
the number of the principal components of [Q(Q′Q)−1/2]′YP employed in
the discriminant analysis described above and (2) task × subject images that
have been smoothed to 500 regional resolution elements (”resels”), where
images contain resels of independently and normally distributed noise. Nat-
urally, different error rates are obtained depending on the particular decision
rule that is used to select principal components 1 to K from [Q(Q′Q)−1/2]′YP
and the number of resels per image.

Step 5: Bootstrap estimation of the robustness of voxel weights in the
ordinal trend topographic estimate. A bootstrap resampling procedure can
be used to estimate the variability of the regional weights in the patterns
about their point estimate values. The complete analysis (steps 1–4) that
was performed on the original subject sample to arrive at the ordinal trend
topographic estimate is usually repeated 100 to 1000 times on samples of
subjects that have been chosen randomly with replacement from the orig-
inal subject pool.2 The inverse coefficient of variation (ICV) serves as the

2 The computational requirements of this resampling process are as follows: for our
fMRI example using 16 subjects and 500 iterations on a Linux workstation with 4 GB of
RAM, the bootstrap estimation process took about 2 hours.
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measure of the reliability of the regional weight at each voxel in the topo-
graphic pattern. ICV is computed from the point estimate of the regional
weights, wvoxel, and the variability of the resampling process around this
point estimate, captured as the standard deviation σvoxel, as

ICVvoxel =
Wvoxel

σvoxel
∼ N(0, 1),

and is approximately standard normally distributed (Efron & Tibshirani,
1994).

The larger the absolute magnitude of ICVvoxel , the smaller the relative
variability of the regional weight about its point estimate value. We adopted
a threshold of at least |ICVvoxel| > 2 for the two examples discussed in the
next section. Under the assumption of a standard-normal distribution, this
corresponds to a one-tailed p-level of p < 0.0228.

3 Application to Event-Related fMRI Study of Working Memory

Methodological details are spelled out for a typical application of OrT to
event-related fMRI data. The application is a study of verbal working mem-
ory, some of whose results have been published in Habeck et al., (2004). Here
we present results that have not been included in the previous publication.

3.1 Study Design. Eighteen young subjects (age = 26.3 ± 4.9 years)
participated in an event-related functional magnetic resonance imaging
(efMRI) paradigm of a delayed-match-to-sample (DMS) task. The initial
scan occurred at 9 A.M. (”PRE”), and the follow-up scan occurred at the
same time 48 hours later (”POST”) to eliminate confounding circadian ef-
fects, yielding 48 hours of prolonged wakefulness. All subjects had been
carefully screened for normal sleep patterns for 2 weeks prior to the experi-
ments and for the absence of neurological or psychiatric contraindications.
(Details are available elsewhere (Habeck et al., 2004) and are omitted here
for brevity.) Finally, 22 additional subjects (age 23.93 ± 1.14) participated in
the PRE scan but did not undergo the sleep deprivation protocol.

The DMS task was a variant of the Sternberg task (Sternberg, 1966, 1969).
A trial lasted 16 seconds. Subjects were instructed to respond as accurately
as possible. No feedback about their performance was given. The sequence
of trial events was as follows: first, a fixed 3 second period of blank pre-
sentation marked the beginning of trial; then, during the stimulus period
of the task, an array of one, three, or six uppercase letters was presented
for 3 seconds (the stimulus phase). With the offset of the visual stimulus,
subjects were instructed to focus on the blank screen and hold the stimulus
items in mind for a 1 second maintenance interval (the retention phase).
Finally, a probe appeared for 3 seconds (the probe phase), which was a
lowercase letter centered in the field of view. In response to the probe,
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subjects indicated by a button press whether the probe matched a letter in
the study array (the left index finger indicated yes and the right index finger
indicated No).

Each of three experimental blocks contained 10 trials for each of 3 set
sizes with 5 true negative and 5 true positive probes per set size. There were
10 × 3 × 3 = 90 experimental trials per scanning session. In addition to the
fixed 3 second period of a blank screen presentation, which we counted as
part of the experimental trial, there were intertrial intervals (ITI) that con-
sisted of presentation of a blank screen and were used as baseline epochs
in the time-series analysis of the subject’s data. Their length was variable
and determined in the following way: 70 2-second increments were avail-
able throughout the whole block, for 30 intertrial intervals. It was decided
stochastically whether a 2 second increment of ITI would be inserted prior
to the start of the trial or whether the trial would begin immediately. The
details of this procedure have been reported in detail elsewhere (Habeck
et al., 2004).

With 30 trials of 16 seconds each, each block lasted for 140 + (30 × 16) =
620 seconds. There were two breaks of approximately 1 minute each
between block 1 and 2 as well as block 2 and 3. This brings the overall
time subjects spent in the scanner by each subject to (3 × 620) + 120 =
1980 seconds, or 33 minutes.

On the evening before the first day of fMRI scanning, every subject re-
ceived seven blocks of initial training on the experimental setup: the first 6
training blocks were run with feedback and the seventh without feedback.
On the first day of fMRI scanning, all subjects were well rested.

Reported here are new OrT/CVA analyses of the fMRI data sets of PRE
and POST sleep deprivation; the focus is on the functional activity of the
retention phase. The first analytic goal was to recover a pattern of sustained
functional connectivity in which subjects expressed ordinal trends with an
increasing memory load of 1-, 3-, and 6-letter arrays. The OrT/CVA analysis
was initially performed on fMRI data from a subgroup of the 40 subjects
who participated in our working memory study: the subgroup consisted
of 16 randomly selected subjects. Subsequent to this analysis, the plan was
to apply the presumptive OrT pattern obtained from the analysis of 16
subjects to the fMRI data of the 24 additional individuals, where there were
again three load conditions per subject, and again subjects were well rested.
The aim of this ”forward application” was to illustrate that the original
ordinal trend effect could be replicated in an independent subject sample of
comparable size. Successful forward application provided a demonstration
that an accurate estimate of the OrT pattern had been obtained from the
initial OrT/CVA analysis.

The forward application of an OrT pattern simply entailed the calcula-
tion of pattern expression in the individual fMRI images obtained for the
retention interval for each of the 24 subjects, for each of the three load con-
ditions. For each subject and load condition, pattern expression is a scalar
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value that is the inner product between each raw fMRI image and the OrT
pattern image: the inner product is simply the voxel-by-voxel multiplica-
tion of the weights in the fMRI and OrT pattern images summed over the
whole brain. (See section 2.1 for a description of this operation in terms of
vector notation.)

Provided that the ordinal trend effect was replicated in the independent
group of 24 well-rested subjects, our plan was to assess whether this pat-
tern of sustained functional connectivity revealed in the well-rested state
was preserved after sleep deprivation. Concretely, our plan was to forward-
apply the OrT pattern estimate of the well-rested state to the fMRI data of
the 18 sleep-deprived subjects, where again there were three load condi-
tions (1-, 3-, and 6-letter arrays) per subject. This forward application of
the OrT pattern provided a test for ordinal trends with maximal statistical
degrees of freedom, where the statistical power of the forward application
was dependent on the accuracy of the original OrT pattern estimate.

3.2 FMRI Preprocessing Steps. Functional images were acquired us-
ing a 1.5 Tesla magnetic resonance scanner (Philips). A gradient echo EPI
sequence (TE = 50 ms; TR = 3 sec; flip angle = 90◦) and a standard quadra-
ture head coil were used to acquire T2∗ weighted images with an in-plane
resolution of 3.124 mm × 3.124 mm (64 × 64 matrix; 20 cm2 field of view).
Based on T1 “scout” images, 8 mm transaxial slices (15–17) were acquired.
Following the fMRI runs, a high (in-plane) resolution T2 image at the same
slice locations used in the fMRI run was acquired using a fast spin echo
sequence (TE = 100 ms; TR = 3 sec; 256 × 256 matrix; 20 cm2 field of view).
Task administration and data collection were controlled by a computer run-
ning appropriate software (Psyscope 1.1) in electronic synchrony with the
MR scanner. Task stimuli were back-projected onto a screen located at the
foot of the MRI bed using an LCD projector. Subjects viewed the screen via
a mirror system located in the head coil. Task responses were made on an
LUMItouch response system, and behavioral response data were recorded
on the task computer.

All image processing and analysis was done using the SPM99 program
(Wellcome Department of Cognitive Neurology) and supporting code writ-
ten in Matlab 6.0 (Mathworks, Natick, MA). FMRI time series were corrected
for order of slice acquisition. All functional volumes in a given subject were
realigned to the first volume from the first run of each study. The T2 anatom-
ical image was then coregistered to the first functional volume, using the
mutual information coregistration algorithm implemented in SPM99. This
coregistered structural image was then used in determining nonlinear spa-
tial normalization (7 × 8 × 7 nonlinear basis functions) parameters for a
transformation into a Talairach standard space defined by the Montreal
Neurological Institute template brain applied with SPM99. These normal-
ization parameters were then applied to the functional data (using SINC
interpolation to reslice the images to 2 mm × 2 mm × 2 mm).
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In a level 1 time-series analysis of the individual subject data, the fMRI
responses to the three separate temporal components of the task, in each ex-
perimental condition and in each block, were fit to separate sets of predictor
variables (Zarahn, 2000). The predictor variables of the time-series model-
ing were the following: a constant intercept (0th-order discrete cosine set)
was chosen for the stimulus and probe phases, whereas a 0th- to 2nd-order
discrete cosine set was chosen for the retention phase. For one block, this re-
sults in five predictor variables (one for stimulus, three for retention, one for
probe) per set size (one, three, and six) per probe type (positive or negative).
An additional intercept term is provided for the effect of block, bringing the
total number of predictor variables per block to (5 × 3 × 2) + 1 = 31. Pre-
dictor variables had a nonzero value at every point in the time series where
a particular condition was met and a zero value at every other point. For
example, one predictor had a value of one during all stimulus phases of set
size one, with a positive probe, during the first block.

The set was convolved with a canonical hemodynamic response wave-
form (a sum of two gamma functions, as specified in the SPM99 program
(Friston et al., 1998) whose beginnings were marked by the appropriate
onset vector for each epoch, set size, and probe type. The resulting time-
series vectors were used in the design matrix for the within-subject model
estimation. The number of rows was the total number of volumes denot-
ing the complete fMRI time series across the scanning session. The number
of columns was 3 × 31 = 93, with 31 design vectors for each experimental
block.

The bandpass-filtered (low pass by a gaussian with a FWHM of 4 sec and
a high-pass cutoff of 14.5 mHz) fMRI time series at each voxel were regressed
onto these predictor variables. A first-order autoregressive autocorrelation
model was fit to the residuals to make statistical inference more robust to
the intrinsic temporal autocorrelation structure (Friston et al., 2000).

At every voxel in the image, components of the event-related responses
that matched the canonical hemodynamic response waveform were esti-
mated for the whole scanning session. Linear contrasts assessed the ampli-
tudes (normalized regression coefficients) of these components. A typical
contrast used in our analysis, for instance, would be activity during the re-
tention phase for six items collapsed across probe types and experimental blocks
versus activity in the ITI blank period. This method of time-series modeling
and contrast estimation at each voxel reduces the number of images to
one per subject per condition. To account for gain differences between fMRI
sessions, activation values were normalized by their voxel averages. The re-
sulting parametric map images were smoothed using an isotropic gaussian
kernel (FWHM = 8 mm) and used as the data in the subsequent analysis.
Afterward, a probabilistic gray matter mask was applied with a thresh-
old of 0.5: every voxel submitted to the analysis had at least a chance of
0.5 of being gray matter. The resulting masked brain images contained 115
resolution elements as indicated by SPM99. These parametric maps serve
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as the dependent variables for the subsequent population-level OrT/CVA
analysis.

3.3 Results. In the initial OrT/CVA analysis of the retention period of
the working memory task, which involved 16 subjects and three levels of
memory load (one-, three-, and six-letter arrays), the first two principal com-
ponents of the OrT/CVA combined linearly to produce an activation pattern
that expressed a statistically significant ordinal trend effect. Here, statisti-
cal significance indicated that a regional activation pattern was present in
the retention period whose functional connectivity was sustained across in-
creasing levels of memory load. This OrT pattern accounted for 5.8% of the
variance in the raw fMRI data set.

Brain regions that concomitantly increased in activation (as ascertained
by the bootstrap test with a threshold of |ICVvoxel| > 2) for the majority of
subjects as a function of memory load were found mainly in parietal areas
(BA 7 and BA 40), frontal/prefrontal areas (BA 6,8,9), right fusiform gyrus
(BA 19), and left superior temporal gyrus (BA 22). Brain regions that con-
comitantly decreased in activation for the majority of subjects were found
mainly in the anterior and posterior cingulate gyri (BA 31, 24), insula (BA 13),
cuneus (BA 19), right parahippocampal gyrus (BA 19), and medial frontal
gyrus (BA 10). For a complete listing of both areas of increased and decreased
activation see Tables 2 and 3 and Figure 2.

Based on the number-of-exceptions statistic (described in step 4 of the
OrT/CVA algorithm), there was a significant ordinal trend (p < 0.01, 2 ex-
ceptions; see Figure 3). This OrT pattern of load-related regional activations
was forward-applied into the fMRI data set of the additional 24 subjects,
who also were scanned while well rested. The matrix of pattern expression
values for three load conditions, for each of 24 subjects, yielded a value
of 5 for the number-of-exception statistic and p < 0.001. The p-value was
computed using a Monte Carlo method similar to that described in step 4 of
the OrT/CVA algorithm, where the p-value is the probability of obtaining a
statistic of five or less from data sets that were generated from the statistics
of gaussian random noise. The p-value reported here is based on 10,000
Monte Carlo simulations of data sets in which individual images contained
115 resolution elements each.

Although the OrT pattern accounted for 5.8% of variance in the fMRI data
set from which it was originally derived, the same OrT pattern accounted
for less variance (i.e., 2.0% variance) in the fMRI data set into which it had
been forward applied (the data set of the 24 additional subjects). This reduc-
tion in the variance-accounted-for most likely reflects a limitation in terms
of the accuracy with which a true OrT pattern can be estimated from an
original sample of 16 subjects. Notwithstanding, this reduction in variance-
accounted-for does not detract from the fact that ordinal trends were ex-
pressed to a significant degree by the estimated OrT pattern in the fMRI
data set of the 24 additional subjects. Indeed, this outcome is consistent
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Table 2: FMRI Example: Talairach Locations of Nearest Gray Matter Locations
with Significant Increased Activation Across Memory Load as Ascertained by
a Bootstrap Resampling Test (ICV > 2.0).

X Y Z Anatomical Description Brodmann Area

32 −52 50 Superior parietal lobule Brodmann area 7
42 −42 56 Inferior parietal lobule Brodmann area 40
−8 3 62 Medial frontal gyrus Brodmann area 6
28 −65 −15 Declive Cerebellum
38 −73 −15 Declive Cerebellum

6 −3 11 Thalamus Thalamus
−4 −11 13 Thalamus Medial dorsal nucleus

−40 0 48 Middle frontal gyrus Brodmann area 6
−24 1 55 Subgyral Brodmann area 6

8 14 3 Caudate Caudate head
−22 −62 45 Superior parietal lobule Brodmann area 7
−28 −72 46 Superior parietal lobule Brodmann area 7
−59 −39 30 Inferior parietal lobule Brodmann area 40

42 40 18 Middle frontal gyrus Brodmann area 10
34 42 26 Middle frontal gyrus Brodmann area 9

−30 −73 −13 Fusiform gyrus Brodmann area 19
−42 −76 −10 Middle occipital gyrus Brodmann area 18
−6 6 0 Caudate Caudate head
−6 14 1 Caudate Caudate head

−42 41 7 Inferior frontal gyrus Brodmann area 46
−40 −61 −14 Fusiform gyrus Brodmann area 37

51 −68 9 Middle occipital gyrus Brodmann area 19
65 −39 0 Middle temporal gyrus Brodmann area 21
14 −80 −16 Declive Cerebellum

6 −81 −18 Declive Cerebellum
12 −65 53 Superior parietal lobule Brodmann area 7
53 −53 −14 Inferior temporal gyrus Brodmann area 20

−51 0 33 Precentral gyrus Brodmann area 6

Source: Results come from Talairach Daemon Client 1.1, Research Imaging
Center, University of Texas Health Science Center at San Antonio.

with the notion that, compared to a separate OrT/CVA analysis of a new
data set, a substantial gain in statistical power can be achieved by the for-
ward application of a previously obtained OrT pattern estimate.

In contrast to the above results, the forward application of the OrT pat-
tern did not reveal a significant ordinal trend effect in the comparable fMRI
data of 18 sleep-deprived subjects. In these later subjects, who performed
the working memory task after 48 hours of sleep deprivation, the forward
application of the OrT pattern of the well-rested state produced six excep-
tions and a p = 0.11. A separate OrT/CVA analysis of the 18 sleep-deprived
subjects, again performed on the fMRI data set of the retention period, also
failed to produce an activation pattern that expressed significant OrT trends.
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Table 3: FMRI Example: Talairach Locations of Nearest Gray Matter Locations
with Significant Decreased Activation Across Memory Load as Ascertained by
a Bootstrap Resampling Test (ICV < − 2.0).

X Y Z Anatomical Description Brodmann Area

−44 −66 36 Angular gyrus Brodmann area 39
−57 −57 34 Supramarginal gyrus Brodmann area 40
−59 −49 36 Supramarginal gyrus Brodmann area 40
−12 −66 −39 Inferior semilunar lobule Cerebellum

24 27 41 Middle frontal gyrus Brodmann area 8
38 −15 14 Insula Brodmann area 13
28 −45 −3 Parahippocampal gyrus Brodmann area 19
46 −52 −24 Tuber Cerebellum
38 −75 −30 Tuber Cerebellum
40 −56 −33 Cerebellar tonsil Cerebellum
59 −53 36 Supramarginal gyrus Brodmann area 40
44 −53 23 Superior temporal gyrus Brodmann area 39
14 −88 25 Cuneus Brodmann area 19

−12 −88 28 Cuneus Brodmann area 19
67 −32 16 Superior temporal gyrus Brodmann area 22

4 50 20 Medial frontal gyrus Brodmann area 9
−28 13 −4 Claustrum Cerebellum
−61 −53 23 Supramarginal gyrus Brodmann area 40
−20 39 35 Superior frontal gyrus Brodmann area 9

65 −16 −1 Superior temporal gyrus Brodmann area 21
46 −21 −1 Superior temporal gyrus Brodmann area 22
26 −6 −3 Lentiform nucleus Putamen

−57 −9 −16 Inferior temporal gyrus Brodmann area 21
−14 20 58 Superior frontal gyrus Brodmann area 6
−42 −66 9 Middle temporal gyrus Brodmann area 37

8 −14 −3 Brainstem Subthalamic nucleus
22 −39 −38 Cerebellar tonsil Cerebellum
55 5 −12 Middle temporal gyrus Brodmann area 21

−63 −14 −9 Middle temporal gyrus Brodmann area 21
−53 −65 −12 Fusiform gyrus Brodmann area 19

26 −50 −24 Culmen Cerebellum
−20 −29 5 Thalamus Pulvinar
−24 −8 −5 Lentiform nucleus Lateral globus pallidus

12 −25 12 Thalamus Pulvinar
38 −79 6 Middle occipital gyrus Brodmann area 19

−53 −5 −17 Middle temporal gyrus Brodmann area 21
14 −44 −35 Cerebellar tonsil Cerebellum

2 1 29 Cingulate gyrus Brodmann area 24
−61 −7 21 Postcentral gyrus Brodmann area 43
−4 −50 −33 Cerebellar tonsil Cerebellum
−8 −75 24 Cuneus Brodmann area 18

−32 −47 −13 Fusiform gyrus Brodmann area 37
67 −35 −10 Middle temporal gyrus Brodmann area 21

Source: Results come from Talairach Daemon Client 1.1, Research Imaging Cen-
ter, University of Texas Health Science Center at San Antonio.
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Figure 2: Activation pattern whose subject expression shows an ordinal trend
across memory load during the retention period. The pattern estimate is based on
the first two OrT principal components. Pattern voxels whose absolute values
exceeded a threshold value of 2 in their inverse coefficient of variation (ICV)
are shown in sagittal, coronal, and transverse projection views, produced with
spm99 software package. (ICV values were estimated using a bootstrap method.)
(A) Positively weighted areas—areas that are increasing in activation across
memory load for a majority of subjects. (B) Negatively weighted areas—areas
that are decreasing in activation across memory load for a majority of subjects.

In summary, in analyzing the effects of sleep deprivation on work-
ing memory, we first applied the OrT/CVA analysis to the fMRI data of
well-rested subjects to obtain an activation pattern that indicated load-
related processing that was operative during the delay period. Although the
functional connectivity captured in this activation pattern appeared to be
sustained with increasing memory load in well-rested subjects, our results
suggest that it had been disrupted in subjects who were sleep deprived
for 48 hours. Indeed, neither a forward application of the load-related
pattern nor a separate OrT/CVA of the fMRI data set of the 18 sleep-
deprived subjects produced a significant ordinal trend effect.

4 Application to Imaging of Visuomotor Learning Using PET

We offer here a second application of the OrT methodology, in this case to
neuroimaging data obtained in a study that used H2

15O PET to investigate
a subtle form of visuomotor adaptation, the learning of a novel visuomo-
tor gain. The neural response to the cognitive challenge was not detectable
using the conventional brain-wide analysis of voxel activity (statistical para-
metric mapping, SPM; (Friston et al., 1996)). Notwithstanding, some of the
sites of activation were predictable a priori and included brain regions that
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would be expected to be strongly interactive. Indeed, an SPM analysis that
was restricted to predictable activation sites did reveal significant responses
(p < 0.05, corrected) during adaptation (Krakauer et al., 2003). The aims of
the OrT analysis were more ambitious: to demonstrate that a brain-wide
analysis, different from a voxel-wise SPM99 analysis, could detect activa-
tions in the predicted regions and that the spatial covariance pattern is
significantly associated with visuomotor adaptation—that is, the expres-
sion of the OrT activation pattern provides a reliable account of the subject
differences in visuomotor adaptation. The results of the OrT analysis met
both aims.

4.1 Study Design. The neuroimaging study examined a form of visuo-
motor adaptation in which subjects performed reaching movements. Indi-
viduals additionally had the task of learning to rescale the spatial mapping
between actual hand movements and the visual appearance of their trajecto-
ries displayed on a monitor (Krakauer et al., 2003). The imaging technology
used was H2

15O PET; 10 subjects participated in the study. Basic task re-
quirements were described in detail in previous publications (Ghilardi et al.,
2000; Nakamura et al., 2001). In brief, all tasks required subjects to move a
handheld cursor with their right hand on a digitizing tablet (Numonics Cor-
poration, Model 2200) while their hand and target locations were displayed
on a 15 inch computer screen. A computer controlled the experiment to gen-
erate screen displays and acquire kinematic data from the digitizing tablet
at 200 Hz. On the day prior to PET scanning, all subjects received a session
of training on the experimental setup, during which time they achieved a
level of errorless performance on a baseline condition.

The baseline condition (CONTROL) required subjects to move a cursor
out and back in one uninterrupted movement from a central starting posi-
tion to one of eight radially arrayed circular targets. In this condition, the
relation between tablet and screen was one to one: the extent and the di-
rection of the hand trajectory on the tablet were replicated on the screen.
Each out-and-back movement took 1 second, and the succession of eight
out-and-back movements was counterclockwise. This eight-target cycle was
repeated eight times over a 96 second period. During PET scanning, a novel
learning condition (GAINalt) was covertly introduced in which the tablet-
to-screen gain was altered every two cycles between 1:1.5 and 1:0.5, thereby
maintaining a relatively constant level of challenge across the 96 second pe-
riod. Two nonconsecutive scans were acquired for each subject performing
the GAINalt task, denoted GAINalt1 and GAINalt2. Subject performance
during each scan was characterized as a series of learning curves, one for
each pair of cycles of constant gain, which were well fitted with single ex-
ponential functions. The coefficients of these exponential functions were
used as estimates of the average rates of adaptation in the session. For this,
the coefficients for the 1:1.5 and 1:0.5 gain change epochs were combined
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to obtain a mean adaptation rate for each scan and subject. This estimated
rate of adaptation was the performance variable used in the correlational
analysis with OrT pattern expression.

4.2 PET Preprocessing Steps. The PET data analyzed were 3D, H2
15O

PET scans of a 96-second duration. The same raw count images were
used in both the SPM and OrT/CVA analyses, where the images were
smoothed, aligned, and mapped into MNI coordinates using the SPM99
package (SPM99, Wellcome Department of Cognitive Neurology). Raw im-
ages were masked with aprobabilistic gray matter mask at a threshold of
0.2. The entire masked raw image of each subject and condition was used
in the OrT analysis. However, in the spatially restricted SPM analysis, the
brain areas included were limited to the left sensorimotor cortex (BA 1, 2,
3, and 4), premotor cortex and SMA (BA 6), posterior cingulate (BA 23),
parietal (BA 5, 7, 40), and visual areas (BA 17, 18), as well as the subcortical
areas of the left putamen, globus pallidus, and thalamus.

Both the brain-wide SPM analysis and the spatially restricted SPM anal-
ysis sought to identify differences between CONTROL activation and the
average activation in averages of two GAINalt scans. By contrast, the OrT
analysis was designed to allow for the possibility of task repetition effects
by modeling the following ordered triad of conditions: (1) the initial 96
second period of alternating gain (GAINalt1), (2) the second, (GAINalt2),
and (3) baseline (CONTROL). In terms of the OrT nomenclature, the CON-
TROL task served as the baseline condition B; GAINalt2, as the condition of
intermediate challenge E1; and GAINalt1, as the condition of highest chal-
lenge E2. This OrT analysis therefore permitted physiological repetition-
suppression effects that took the form of a negative ordinal trend across
the prespecified task ordering (Ungerleider, Doyon, & Karni, 2002). In addi-
tion, OrT allowed individual differences in the expression of the activation
pattern that could be accounted for by subject differences in the repetition
effect or the rate of visuomotor adaptation.

4.3 Results. The OrT method identified a pattern of regional activity
that was a linear combination of the first two principal components for
which its change in expression between GAINalt1 and CONTROL was sig-
nificantly correlated with the subject rate of adaptation (see Figure 4). To
obtain this pattern, the difference in adaptation rate between GAINalt1

Figure 3: Subject expression of memory load–related OrT pattern constructed
from the first 2 principal components of the data from the retention phase of 16
subjects for 1, 3, and 6 letters. Every subject’s expression in the 1-letter condition
has been subtracted from the expression of all three conditions to heighten
the visual impression of the variability in curve shapes. As a consequence, every
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Figure 3: (cont.) subject’s pattern expression in the 1-letter conditions is now
zero. (A) Task × subject expression curves for the 16 subjects from whom the
pattern was originally derived. The number-of-exceptions statistic has the value
2, resulting in a p-value p < 0.01. (B) Forward application of the memory
load–related pattern to 24 additional subjects, showing a preserved relation-
ship between the task × subject expression of the pattern and memory load.
The number-of-exceptions statistic has the value 5, confirming a significant or-
dinal trend, p < 0.001. (C) Forward application of the memory load–related
pattern to the 18 sleep-deprived subjects, immediately following 48 hours of
sleep deprivation. A relationship between the task × subject expression of the
pattern and memory load is no longer evident. The number-of-exceptions statis-
tic has the value 6, p = 0.11, which is insufficient to reject the null hypothesis of
the absence of an ordinal trend.
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Figure 4: (A) Relationship between the task × subject expression of the first
two OrT principal components and subject rates of adaptation in the GAINalt1
and GAINalt2 conditions. Subject rates of adaptation in GAINalt1 were signif-
icantly predicted (R2 = 0.88; p < 0.01) by a linear combination of the compo-
nent expressions in the individual GAINalt1—CONTROL subtraction images.
Further, the expression of the same component combination in the GAINalt2—
CONTROL subtraction images predicted rates of adaptation in the repeat con-
dition (R2 = 0.55; p < 0.05; figure not shown). (B) Expression of task activity
curves for each of 10 subjects for the activation pattern whose expression pre-
dicted subjects’ rates of gain adaptation. Each subject’s CONTROL value is
subtracted from his GAINalt1 and GAINalt2 values, highlighting subject differ-
ences.

and CONTROL was used as the dependent variable in a multiple lin-
ear regression to produce a linear combination of the first two principal
components.

The p-value from the multiple regression analysis was p < 0.01. In addi-
tion, the subject × task expression of this pattern revealed that 9 of 10 sub-
jects exhibited increasing ordinal trends from the CONTROL to GAINalt2 to
GAINalt1 conditions (see Figure 4), which is a significant degree of concor-
dance between pattern expression and the ordinal trend criterion (p < 0.05)
according to the type I error rate computed using the Monte Carlo method
described earlier. In other words, the spatially unrestricted OrT/CVA re-
vealed a pattern of activation that was statistically significant based on
the criterion of ordinal trends and, separately, on the successful predic-
tion of subject performance scores. Notwithstanding, subjects differed in
the amount of decline, with some subjects showing right prefrontal-basal
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sagittal coronal

transverse

Figure 5: Activation pattern whose expression in subjects’ GAINalt1—
CONTROL and GAINalt2—CONTROL subtraction images predicted the re-
spective GAINalt1 and GAINalt2 rates of adaptation. Pattern estimate is based
on the first two OrT principal components. Pattern voxel values that exceed
a threshold value of 2 in their ICV are shown in sagittal, coronol, and trans-
verse projection views (spm99). The pattern consists of left medial cerebellum;
left/right basal ganglia and thalamus; left/right primary and secondary visual
cortices (BA 17, 18, 37); and brainstem/pons. It also shows some right frontal
and prefrontal activation (BA 6, 46, 47).

ganglionic-cerebellar activity that was reduced almost to their respective
null task levels, while others showed little or no reduction in activation (see
Figure 4).

The bootstrap pattern associated with gain adaptation identified areas
similar to those identified by Krakauer et al. (2003)—the left and right puta-
men and the left cerebellum (see Figure 5 and Table 3)—but also showed
additional activations as indicated in Table 1. It is important to state that
there is no explicit consideration regarding extent of activation in the boot-
strap method. Nevertheless, the number of contiguous voxels that reach
significance may be a further indication of the importance of each region of
the OrT pattern in mediating gain adaptation.

Between the 96 second period in which subjects were initially challenged
with tablet-to-screen gain changes and the second 96 second period of gain
changes, individuals showed a substantial mean decline in their brain re-
sponses to the challenge in right prefrontal, basal ganglionic, and cerebellar
activity. Were this level of decline to be replicated in a forward application of
the OrT pattern to a new subject sample, the mean difference in OrT pattern
expression would be significant at p < 0.05.

5 Discussion

The role that OrT is expected to play in functional neuroimaging and cog-
nitive neuroscience can be summarized as follows. OrT takes its place
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alongside the voxel-seeded PLS analysis as being only the second spatial
covariance model that is specifically designed to recover latent aspects of
functional connectivity in neuroimaging studies that involve parametric
experimental designs. Both OrT and voxel-seeded PLS recover information
about connectivity based solely on experimental design variables. In partic-
ular, there is no requirement in applications of either the OrT or voxel-seeded
PLS analysis to provide a quantitative model of the uncertain relationship
between functional brain circuitry and subject variables, such as assess-
ments of performance in individual task conditions or general skill level
(e.g., IQ or level of education). OrT and PLS analyses target distinct types of
task × subject interactions, where each analysis reveals a different aspect of
functional connectivity. In this regard, OrT is different in two respects. First,
it models a type of task × subject interaction associated with sustained func-
tional connectivity across graduated changes in task parameters. In fact, the
interaction modeled by OrT contains information about functional connec-
tivity that previously has not been used in either spatial covariance mod-
eling or voxel-wise, univariate, and multivariate linear modeling. Second,
although voxel-seeded PLS requires partial information about the brain re-
gions involved in patterns of functional connectivity, OrT does not. OrT
is guided simply by the theoretical prediction of directional changes in re-
gional activity with changes in task parameter values. In short, OrT, like
voxel-seeded PLS, represents a unique omnibus test of functional connec-
tivity that is performed across multiple task conditions and the entire brain.

From an applied perspective, we have presented the results of the OrT
analysis of both event-related fMRI and H2

15O PET studies of memory and
learning. In part, the goal has been to demonstrate the statistical methods
that are used to evaluate the specificity and sensitivity of the OrT method:
detection of latent patterns that express ordinal trends on a subject-by-
subject basis, estimating the salience of individual regions (voxels) in the
latent OrT patterns, and the reliability of the regional weights. In addition,
the empirical findings appear to have scientific merit in their own right.

5.1 Event-Related fMRI Study of Working Memory. We applied the
OrT/CVA method to the retention data of a delayed-match-to-sample task
in order to identify an activation pattern whose subject × task expression
would reveal a positive monotonic trend with memory load. Such a pattern
was successfully derived from a sample of 16 subjects (p < 0.01) and its
validity confirmed through forward application to a replication sample of
24 subjects (p < 0.001).

Figure 5 and Table 4 depict areas whose increase in activation parallels
the increase in memory load found in the inferior and superior parietal lobe
(BA 40, 7), the middle frontal gyrus (BA 9), and the left superior temporal
gyrus (BA 22); the last region merits speculation that auditory rehearsal
is taking place during the retention period (Baddeley, 2003). There also
were areas that decreased their activation with increasing memory demand
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Table 4: PET Example: Talairach Locations of Nearest Gray Matter whose
Significant Contribution to the Pattern Associated with Adaptation Rate Was
Ascertained by a Bootstrap Resampling Test (ICV > 2).

X Y Z Anatomical Description Brodmann Area

−36 −47 −13 Fusiform Gyrus Brodmann area 37
50 41 9 Inferior Frontal Gyrus Brodmann area 46
55 4 31 Precentral Gyrus Brodmann area 6
28 −12 2 Lentiform Nucleus Putamen
36 −6 −1 Claustrum ∗

−26 4 2 Lentiform Nucleus Putamen
40 9 −6 Insula Brodmann area 13

−51 −44 −16 Fusiform Gyrus Brodmann area 37
50 −53 −12 Inferior Temporal Gyrus Brodmann area 20
53 −65 −9 Middle Occipital Gyrus Brodmann area 37

−63 −32 13 Superior Temporal Gyrus Brodmann area 22
−14 −23 5 Thalamus Pulvinar
−10 −44 8 Posterior Cingulate Brodmann area 29

22 15 −4 Lentiform Nucleus Putamen
−20 −26 −9 Parahippocampal Gyrus Brodmann area 28

42 −83 6 Middle Occipital Gyrus Brodmann area 19
46 −46 47 Inferior Parietal Lobule Brodmann area 40

−18 −23 12 Thalamus Pulvinar
32 8 7 Claustrum ∗
24 −84 −8 Middle Occipital Gyrus Brodmann area 18
14 −88 23 Cuneus Brodmann area 19

−20 −88 −7 Middle Occipital Gyrus Brodmann area 18
67 −42 13 Superior Temporal Gyrus Brodmann area 22
−8 −60 47 Precuneus Brodmann area 7
67 −44 10 Superior Temporal Gyrus Brodmann area 22

Source: Results come from Talairach Daemon Client 1.1, Research Imaging Center,
University of Texas Health Science Center at San Antonio.

during the retention period, featuring the anterior and posterior cingu-
late gyri (BA 31,24) and the medial frontal gyrus (BA 10). Deactivations
with experimental task parameters have received more attention in recent
years and offer some points of contact with our results. The specific neu-
roanatomy of connections between medial and lateral prefrontal cortices
as well as other cortical areas is an area of ongoing research (Barbas, 2000;
Barbas, Ghashghaei, Dombrowski, & Rempel-Clower, 1999) that posits that
the connectivity among these particular regions of PFC and posterior re-
gions (involved in oculomotor guidance and spatial attention) contributes
to the synthesis of memory, cognition, and emotion in general.

A recent study using working-memory with an N-back design (Pochon
et al., 2002) also found anterior medial prefrontal deactivating with
increasing memory load. The authors of this study offer a rationale for the
deactivation of the medial prefrontal cortex that is consistent with the gen-
eral resource account framework (Engle, Conway, Tuholsky, & Shisler, 1995).
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A shift of resources away from ongoing, but inessential, processes to an in-
creasingly demanding cognitive task might underlie the medial prefrontal
deactivation in accordance with this framework. The amount of this shift
might still be subject dependent, with a fixed ratio between activity increases
and decreases, and result in a large covariance between areas detectable by
a multivariate analysis technique. Because of the role of prefrontal lim-
bic cortices (i.e., orbitofrontal and medial prefrontal cortices) in emotional
processing (Barbas, 2000), the results suggest that a shifting balance dur-
ing higher cognitive processing causes increasing activity in cortical cogni-
tive areas and decreasing activity in the limbic and paralimbic structures.
Such reciprocal changes in brain activation associated with emotional and
cognitive processing are also found in mood disorders such as depression
(Mayberg et al., 1999), although with a different relative sign to our find-
ings. In depressed patients, hyperactivity in limbic and paralimbic areas is
accompanied by decreased activity in cortical areas, resulting in worse cog-
nitive performance. Negative mood and high memory demand might thus
be interpreted as opposite ends of a common continuum, which is reflected
in sustained functional connectivity (i.e., a fixed correlative relationship be-
tween regional activation), resulting in the changing level of expression of
one covariance pattern only.

Although the functional connectivity captured in the above activation
pattern appears to be sustained with increasing memory load in well-rested
subjects, it appears to be disrupted in subjects who were sleep deprived
for 48 hours. In other words, one effect of sleep deprivation on working
memory—in the retention period—is to disrupt the particular memory pro-
cessing that normally mediates letter retention at low to moderate memory
loads. This conclusion is based on two OrT analytic results. First, the fMRI
data of 18 sleep-deprived subjects failed to produce significant positive or-
dinal trends when the OrT pattern that revealed positive ordinal trends
in 40 well-rested subjects was forward-applied. Second, an independent
OrT/CVA analysis of the 18 sleep-deprived subjects failed to produce an
activation pattern that expressed significant ordinal trends. Apparently the
effect of sleep deprivation is not simply to increase the load on the mem-
ory processes that are normally operating in well-rested subject at low to
moderate load levels. The effect of sleep deprivation on working memory
may be to induce nonadditive or nonmultiplicative load effects on memory
processing, where the effects may be different in different individuals.

5.2 H2
15O PET Study of Visuomotor Learning. We applied the OrT

method to an H2
15O data set obtained in a study of visuomotor learn-

ing. These PET data had previously been analyzed using SPM99 with
conventional voxel-by-voxel modeling (Krakauer et al., 2003). A statisti-
cal significant activation pattern was obtained using OrT, where many of
the regions with reliable levels of activation were predicted a priori. These
regions include several of those normally activated during the execution of
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overlearned hand movements (i.e., the CONTROL task), which are not ac-
tivated during sensory control tasks. In this regard, the OrT activation was
similar to the pattern obtained in a spatially restricted SPM comparison of
the gain adaptation task (i.e., the GAINalt task) and the CONTROL task. In
the latter SPM analysis, a spatial mask was used to achieve statistically sig-
nificant results. This mask delimited areas that routinely had been demon-
strated to be activated during the execution of overlearned hand move-
ments: the left primary sensorimotor cortex, (BA 3, 2, 1 and 4), premotor
cortex and SMA (BA6), posterior cingulate (BA 23), parietal (BA 5,7,40),
and visual areas (BA 17,18) as well as the subcortical areas of the left puta-
men, globus pallidus, thalamus, and cerebellum. The latter SPM analysis
was based on the expectation that the brain areas that mediate gain adapta-
tion reside for the most part within the motor network that is responsible for
the execution of overlearned hand movements. However, right prefrontal
areas of activation, which do not normally occur during overlearned hand
movements, were also part of the OrT activation pattern. Potentially this
combination of prefrontal, basal ganglionic, and cerebellar activation sites
represents a pattern of strongly functionally connected brain areas. More-
over, combined with the significant association between the OrT pattern
expression and subject rates of gain adaptation, the OrT finding raises the
possibility that prefrontal regions may be involved in some aspect of gain
adaptation. The necessary caveat is that the potential contribution of this
discovery relies on a future series of more elaborate experimental inves-
tigations into the functional connectivity between prefrontal cortex, basal
ganglia, and cerebellum during visuomotor adaptation.

5.3 The Invention of the OrT Design Matrix and Why the Matrix
Works. As one might imagine, the OrT design matrix was not invented
through a random process of trial and error. Although there was no
guarantee that a matrix multiplication approach (i.e., a CVA approach)
would actually work, we sought to design a matrix that selectively enhanced
the voxel × task × subject variance of patterns that expressed ordinal trends.
It was necessary to specify explicitly the different types of latent patterns
whose voxel × task × subject variance must be reduced in the transformed
data set. Without that stipulation, the application of PCA or SVD to the
transformed data set would not necessarily produce major principal com-
ponents that provided a good approximation to one or more patterns that
express ordinal trends. By design, the OrT analysis relies on the major prin-
cipal components to provide good approximations to patterns that express
ordinal trends.

As suggested in section 1, the invention of the OrT design matrix re-
quired a thorough understanding of the possible similarities and differences
between the voxel × task × subject variances of patterns that express ordinal
trends and patterns that do not. On the one hand, there are the similarities
and differences between patterns that express the predicted mean trend and



1632 C. Habeck et al.

patterns that express mean directional changes that are different from the
predicted trend. On the other hand, there are similarities and differences
between patterns that express mean trends in the predicted direction but
different types of task × subject interactions. Finally, there are similarities
and differences between patterns that express ordinal trends in the predicted
direction but exhibit different amounts of voxel × task × subject variance
in the original data set.

The OrT design matrix we invented reduced these similarities and dif-
ferences to just three factors: task mean differences, within-task variances,
and intertask correlations. To appreciate the importance of the novel third
factor, consider a series of three experimental conditions, labeled B-E1 -
E2, in which features 1 and 2 are identical in all the latent patterns of the
data set, whereas the intertask correlations are different. Indeed, suppose
it is ρit = CORR(b, e1)/2 + CORR(e1, e2)/2 that distinguishes latent patterns
that express ordinal trends from patterns that do not. In patterns that ex-
press ordinal trends, the (mean) intertask correlation will be moderately
to highly positive—indeed, significantly more positive than the intertask
correlations of patterns that do not express ordinal trends. A Monte Carlo
sampling of 100,000 families of subject ordinal trends (across B-E1 -E2 for
13 subjects) illustrates the statistical robustness of this identifying feature of
OrT patterns (see Figure 6).

In the OrT transformed data set, intertask correlations appear as an ex-
plicit term in the algebraic expression of the voxel × task × subject variance
of individual latent patterns. For a simple example, consider the minia-
ture data set described in section 2, which consisted of just two experimen-
tal conditions. In this example, the contributions of each latent pattern to
the 2 × 2 regional covariance matrix Y′[Q(Q′Q)−1]Q′Y of the transformed
data set is the variance VAR(b + e1) = VAR(b) + VAR(e1) + 2COV(b, e1) as-
sociated with the latent pattern. In OrT analyses involving a series of
three or more tasks, the contribution of each latent pattern to the mean-
centered covariance matrix also includes the additive factor of the squared
mean differences between tasks. The difference in the COV(b, e1) values
for the OrT and non-OrT patterns, which corresponds to the difference
in their intertask correlations, was the unique factor that distinguished
the two covariance patterns. In fact, for the OrT pattern in the minia-
ture data set, COV(b, e1) was a large positive value contributing addi-
tively to the overall variance of the OrT pattern in [Q(Q′Q)−1/2]′Y, whereas
COV(b, e1) was zero for the non-OrT pattern. The intertask correlations
depicted in the Monte Carlo simulations of Figure 6 and in the miniature
data set are a feature of all covariance matrices of OrT transformed data
sets, regardless of the number of experimental conditions in the parametric
series.

The recognition that intertask correlations were a key feature of OrT
patterns meant that our search for an optimal design matrix for OrT/CVA
was limited to high-dimensional design matrices: namely T∗N × (T − 1)∗N
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Figure 6: Correlational statistics for a Monte Carlo simulation of random sam-
ples of monotonic curves, computed for task triplets (ordered B-E1 -E2) and
13 subjects. Specifically, the cumulative distribution functions are depicted for
(A) the maximum of CORR(b, e1) and CORR(e1, e2); (B) the difference between
this maximum value and Corr(b, e2); (C) Corr(b, e2); and (D) the difference be-
tween the minimum of the pair CORR(b, e1) and CORR(e1, e2), and CORR(b, e2).
Vertical lines indicate median and 5 percent values for individual cumulative
distribution functions.

matrices. Our strategy for testing candidate matrices was to investigate
simulated data sets in which low-dimensional design matrices failed in a
significant way to recover latent patterns with ordinal trends. The latter
design matrices are those frequently used in either voxel-wise univariate
or multivariate analyses or in PLS analyses. Our test of feasibility was that
the OrT design matrix Q did not fail in these worst-case scenarios. (See the
appendix for details.)

5.4 Conclusion. The OrT analyses of the event-related fMRI and H2
15O

PET studies revealed patterns that suggested the presence of sustained func-
tional activity in the face of considerable subject variation in the trajecto-
ries of their ordinal trends. Moreover, in this article, we have argued that
although it may be difficult to anticipate the impact that normal subject
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variation has on regional functional connectivity, individual variation can
be treated as an additional experimental dimension in neuroimaging stud-
ies rather than as an unexplained phenotypic variation. The OrT approach
is to model functional connectivity as interactions between experimental
parameters and endogenous variables. Indeed, these interactions, like any
other type of experimental effect, must be relatively large to be reliably
measured. In other words, OrT performs best when applied to studies that
achieve an optimal trade-off between study designs that include normal
phenotypic variation and experimental designs that exert sufficient control
over individual differences so as to achieve sustained functional connecti-
vity.

At the same time, OrT analysis takes full advantage of experimental para-
metric designs to maximize statistical specificity. In particular, the specificity
of the analysis increases dramatically with the number of conditions in the
series. The probability of a predicted ordinal trend occurring by chance in
one subject alone equals (T !)−1; the conjunction across subjects thus yields a
probability of (T !)−N, explaining how the specificity of the method increases
with the number of tasks and subjects. Moreover, statistical specificity in-
creases in the OrT analyses considerably more rapidly than it does when
analyses are limited to T × (T − 1)/2 pair-wise comparison tests that are
corrected for multiple comparisons.

The OrT experimental strategy would appear to be appropriate for study-
ing not only young adults and their cognitive abilities, but also normal aging
(Cabeza et al., 1997; Grady et al., 2003; Stern et al., in press) and neurological
and psychiatric diseases (Alexander et al., 1999; Eidelberg et al., 1998;
Fukuda et al., 2001).

On the other hand, as we pointed out earlier, voxel-seeded PLS anal-
yses have been particularly successful in detecting altered functional
connectivity, which is also of considerable scientific value. Indeed, some
neuroscientists (e.g., Kosslyn et al., 2002) would argue that individual dif-
ferences in cognitive style would persist even in an ideal world without
the practical limitations of experimental design, imaging technologies, and
statistical sampling. Overall, OrT and voxel-seeded PLS together are useful
for verifying the robustness of our cognitive theories in the face of fac-
tors whose influence on mental activity we do not yet know much about.
For all the above reasons, both OrT and PLS analyses may take a promi-
nent place in the toolkit of the multivariate modeler of brain imaging
data.

Appendix: Derivation and Validation of OrT Design Matrix

To answer whether a design matrix achieves a salience enhancement of
the effects of interest is difficult. It supposes that the very knowledge
sought after—knowledge of the underlying covariance structure of the
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data constituted by targeted and nontargeted activation patterns—is known
beforehand, which is impossible. Monte Carlo simulations, on the other
hand, afford a model instantiation of a data set with precise knowledge of
the targeted and nontargeted activation patterns prior to the analysis, al-
lowing a thorough assessment of the performance of different design matrix
and analytic method choices in identifying the targeted activation patterns.
This is not to claim that Monte Carlo simulations are an adequate substitute
for the complexity of real neuroimaging data, but if these simple scenar-
ios show deviations from the performance characteristics anticipated for
routinely chosen design matrices, there is ground for suspicion that in the
case of real-world neuroimaging data, the problems would be compounded.
Monte Carlo simulations therefore present a test bed for verification (and
possibly correction) that our intuitions about the performance of design
matrix choices really hold up.

A.1 Unique Target Features. The objective of the OrT design matrix is
to assign maximum salience to monotonic task-activity curves. One unique
feature is that a family of N monotonic curves, randomly sampled from the
set of all possible tripoint monotonic curves, nearly always exhibits posi-
tive intertask correlations between the subject levels of pattern expression.
Second, of the three correlations among tasks, the largest is between con-
secutively ordered tasks, thereby identifying the third task as an end point
of the ordering. Indeed, in a majority of cases, the two correlations be-
tween consecutively ordered tasks are greater than the correlation between
nonconsecutively ordered tasks, thereby identifying both end points of the
ordering.

An elementary model of random between-task changes in pattern ex-
pression illustrates the stochastic features of a random sample of monotonic
curves. For a task ordering B-E1 -E2, the targeted pattern’s activity levels in
tasks E1 and E2, denoted e1 and e2, respectively, are constructed from sums
of identical and independently distributed random variables b, !E1 − B and
!E2 − E1, where each is a positive-valued random variable sampled from
the uniform distribution U(0,1). e1 is distributed as b + !E1 − B and e2 as
b + !E1 − B + !E2 − E1. These assumptions guarantee monotonic curves with
as few constraints and as good a generality as possible. With increasing
parametric load as specified by the task conditions, subjects increase their
expression of the targeted topography, although the amount of the increase
is independent of the current level of expression. As a consequence, the ex-
pected value of all three intertask correlations is positive, and in the majority
of the cases, it holds that

min{CORR(b, e1, CORR(e1, e2)} > CORR(b, e2).
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Figure 6 charts the results of a Monte Carlo simulation of 100,000 random
samples of tripoint monotonic curves in which the correlations between con-
secutively ordered tasks are compared, sample by sample, to the correlation
between nonconsecutively ordered tasks. The nonnegativity of the correla-
tional statistics for cumulative distribution functions depicted in Figures 6A,
6B, and 6C is characteristic of almost all randomly sampled families of mono-
tonic curves, even when b, !E1 − B and!E2 − E1 are not identically distributed.

When comparing the factors that determine pattern salience in the orig-
inal data Y and the factors that determine pattern salience for the OrT-
transformed data [Q(Q′Q)−1/2]′YP in the OrT analysis, the weight given to
the nonnegativity of intertask correlations is immediately evident. In the
untransformed data sets, the factors that determine salience are the spatial
extent of the pattern activation, the size of the mean trend effect, and the
subject variance in within-task expression. Indeed, from the perspective of
neuromodeling, we consider the worst-case scenario as the one where every
nontarget is equal to that of the target in each of these variables.

By comparison, in the OrT transformed data matrix [Q(Q′Q)−1/2]′YP
there are four features of pattern expression that determine pattern salience:
the spatial extent of the pattern activation, the size of the mean trend (i.e., the
squared difference between the means of the summed pattern expressions
b + e1 and e1 + e2), the subject variance in within-task expression, and the
intertask correlations between subjects’ pattern expression for tasks B and
E1 and tasks E1 and E2. In a comparison of the two lists of determinants
of pattern salience, the principal difference is the increased salience with
positive intertask correlations.

A.2. Monte Carlo Simulations.

A.2.1 Data Set Design. The worst-case scenarios that are reported here
are those in which the salience of every nontarget is equal to that of
the target in the untransformed data Y. More specifically, each nontarget
activation pattern is comparable to the target pattern in terms of the spatial
extent of the pattern activation, the size of the mean trend effects in pattern
expression, and the subject variance in within-task expression. The simi-
larities between the targeted and nontargeted component processes have
been further augmented. First, there is complete overlap in the voxels acti-
vated by the targeted and nontargeted component processes. Second, one or
more nontargeted activation patterns exhibit a mean task trend identical to
that expressed by the target pattern, although they differ from the target in
that they do not express positive intertask correlations. Third, other nontar-
geted activation patterns express positive intertask correlations, although
they differ from the target in the direction of their mean task trends.

In the Monte Carlo simulations reported here, individual data sets consist
of three task conditions in which the activation patterns of seven component
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processes are superimposed. The raw data matrix Y can thus be denoted as

Y =
7∑

k = 1




b
e1
e2





k

z′
k.

The index k here denotes the different topographies, and zk therefore is a
column vector with a number of rows equal to the number of voxels or
regional resolution elements.

Even without application of the projection operator P that removes
the task-independent effects, one can appreciate the salience enhancement
achieved through the application of the OrT design matrix Q by computing
the voxel × voxel covariance matrix of Q′Y,

Y′Q(Q′Q)−1Q′Y ≈
7∑

k = 1

(
b2 + 2e2

1 + e2
2 + 2b · e1 + 2e1 · e2

)
kzkz′

k.

The shadow processes essentially have zero intertask covariance in their
subject expression. The ordinal trend effects for the alternative task order-
ings B-E2-E1 and E1 -B-E2 still have some residual intertask covariances,
but as shown in Figure 6, in most cases these are lower than for the ordinal
trend effects of the ordering B-E1 -E2.

All seven patterns are nonfocal activations, where the relative distri-
bution function of voxel weights is matched in the different component
processes. In each data set, voxel weights are sampled from the uniform
distribution U(0,1) and independently distributed in different component
processes. The number of voxels used in these simulated data sets is 500,
approximating the number of resels normally contained in smoothed PET
and fMRI images. In this Monte Carlo simulation, data sets consisted of 39
task × subject scans, or three scans for each of 13 subjects. No voxel noise
was overlaid on these composite patterns of component activations. Taken
as a whole, each composite activation pattern of a data set may be thought
of as representing the footprint of the larger functional brain architecture
that is common to all subjects and tasks.

Figure 7 demonstrates some representative task-activity curves for the
subject expression of the all the activation patterns used in the simulations.
Among the seven activation patterns in a data set, there was a target for each
of the three task orderings—an activation pattern that expressed monotonic
task-activity curves for all subjects for all possible task orderings B-E1-E2,
B-E2-E1, and E1-B-E2. (The end points in a task ordering are interchange-
able since monotonically increasing and decreasing subject expressions are
equivalent; therefore, there are three rather than six different combinations.)
The effect size of the mean trend was the same in all three of these activa-
tion patterns. The remaining four activation patterns were nontargets with
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Target for B/E1/E2 Shadow of target for B/E1/E2

Target for B/E2/E1 Shadow of target for B/E2/E1

B E1 E2

Target for E1/B/E2

B E1 E2

Shadow of target for E1/B/E2

(A) (B)

Figure 7: Representative illustration of the task-activity curves in the subject
expression of 6 different types of activation patterns used for the Monte Carlo
simulations. Column (A) shows processes that display ordinal trends for 3 dif-
ferent task orderings: B-E1-E2, E1-B-E2, and B-E1-E2. Column (B) shows the
corresponding shadow processes—activation patterns whose subject expres-
sions show the same monotonic increase in activity on the mean and have the
same within-task variances, while allowing a substantial number of subjects to
violate the requirement of monotonicity.

intertask correlations of zero, although the direction of a pattern’s mean
trend was the same as that in one of the former three activation patterns.
For this reason, we refer to each of the latter four activation patterns as a
nontargeted shadow process.

The elementary model of random between-task changes in pattern ex-
pression described in section A.1 was used to generate the family of mono-
tonic task-activity curves for the former three activation patterns. The three
sets of three model random variables were identically and independently
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distributed. Task expressions in the remaining four nontarget activation
patterns were independently distributed as well. One hundred thousand
simulations were performed to sample the different possible families of
monotonic task-activity curves adequately.

In the simulations reported here, we used the uniform distribution as the
sampling distribution for within-task pattern expressions. However, simu-
lations were also run using a normal sampling distribution, and practically
identical results were obtained.

A.2.2 OrT Performance. Performance assessment of the OrT analysis is
based on the degree to which this CVA has enhanced the salience of tar-
geted activation pattern. Enhanced salience is a relative judgment based
on the comparison of the similarities between the activation pattern of the
simulated target and the major singular images of OrT/CVA versus the sim-
ilarity between the target and the major eigen images of the untransformed
data YP. The indices of similarity are, respectively, the accuracy with which
the first four singular images of OrT/CVA predict the targeted activation
pattern in a multiple linear regression analysis and the accuracy with which
the first four eigen images of YP predict the target pattern. The respective
multiple linear regression coefficients (R2) are used as a goodness-of-fit mea-
sure for individual data sets. The same task ordering was used to specify
the targeted pattern in all data sets. In order to avoid confusion with the
examples of Ort/CVA before, we stress again that no inferential assessment
was conducted in these simulations; neither was the ordinal trend evalu-
ated in terms of statistical significance, nor was a bootstrap estimation of
the robustness of voxel weights performed. The R2 statistic merely captures
how much information about the target is captured by the first few princi-
pal components. This involves a multiple linear regression that presumes
perfect knowledge of the targeted activation pattern—something that is im-
possible in a real-world neuroimaging context. R2 encodes the upper limit of
what is maximally knowable about the target for each design matrix tested.

The cumulative distribution functions (CDFs) of the R2 values were tab-
ulated for the entire Monte Carlo simulation for both OrT/CVA and YP.
The degree to which OrT/CVA provides a better R2 CDF than YP is the
benchmark used to quantify the OrT/CVA enhancement of target salience.

We also include a comparison of the OrT CDF with the CDFs associated
with two other CVA design matrices that do not assign positive weight to
intertask correlations. We used the Helmert design matrix (i.e., performed
the SVD on [H(H′H)−1/2]′Y), as well as the design matrix of mean trends
(McIntosh et al., 1996), M. M is a 3N × 2 matrix, containing as predictors
the mean Helmert contrasts according to

M =




−1 1
1 1
0 −2



.
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The matrix [M(M′M)−1/2]′Y is then submitted to SVD, yielding 2 singular
images.

These comparisons afford an independent verification that the inter-
task correlations are essential to maximizing the salience of activation pat-
terns that express monotonic task-activity curves. As discussed before, the
Helmert design matrix assigns pattern salience to activation patterns in
a manner that weights intertask correlations negatively. Meantrend CVA
does not capture subject differences at all and can therefore be expected to
perform less well than OrT/CVA. For the Monte Carlo simulations of the
worst-case scenario, we therefore anticipated the CVA of mean trend effects
as well as CVA with the Helmert design matrix to yield a target recovery that
is not only inferior to that of OrT/CVA, but also inferior to that of an anal-
ysis of the minimally transformed data YP (demonstrating the unfortunate
impact of an ill-chosen design matrix).

Figure 8 presents the results of two Monte Carlo simulations of (1) the
worst-case scenario, in which the mean trends of the four nontargeted
shadow process are equal in size to mean trends of the other three acti-
vation patterns, and (2) a less severe scenario, in which the mean trends of
the shadow processes are zero. For each of the two simulations, the three
CVA design matrices were applied to YP for each of 100,000 data sets Y.
For the OrT and Helmert CVAs, the first four singular images were used
to predict the simulated target pattern of regional activation in a multiple
linear regression analysis. For the CVA mean trend analysis, its two singular
images were used in the regression analysis. The cumulative distribution
function of the regression R2 was tabulated for 100,000 data sets, for each
CVA method. These R2 CDFs were compared with the R2 CDF computed
using the first four eigen images of YP.

The findings for the CVA mean trend analysis and Helmert CVA are
presented in Figures 8A and 8C. Figure 8A depicts the findings for the
worst-case scenario. The R2 CDF of the Helmert CVA is shifted to the left
of the CDF of YP. The relative positions of these two CDFs indicate
that the targeted activation pattern actually has diminished salience in
the Helmert CVA approach. The R2 CDF of the mean trend CVA is also
shifted to the left of the YP-CDF—albeit slightly more so than the CDF
of the Helmert CVA. A similar ordering of the R2 CDFs was obtained for
data sets in which the shadow processes exhibited no mean task differ-
ences. In Figure 8C, the Helmert R2 CDF is shifted slightly to the left of
the CDF of the mean trend CVA, which is shifted to the left of the CDF
for YP.

OrT/CVA produced better results, which are depicted in Figures 8B and
8D. In Figure 8B, the R2 CDFs are computed for data sets in which the
mean trends of the nontargeted shadow process are equal in size to mean
trends of the remaining three activation patterns. The median R2 value of
the OrT/CVA was 0.72, indicating that for half of the simulated data sets,
72% or more of the variance of the target’s regional pattern weights was
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Figure 8: OrT sensitivity to ordinal trends relative to that of a PCA on the re-
duced data matrix YP and two other CVAs—Helmert CVA and mean trend
CVA. Target sensitivity charted as CDFs—Q, OrT; I, YP; H, Helmert; and
M, mean trend—of the R2 regression statistic for two Monte Carlo simula-
tions involving different shadow processes. (A) Four shadow processes with
mean trends equal in size to that of the targeted component process. (B) Four
shadow processes with no mean trend. Vertical lines indicate median and
5 percent R2 values for individual CDFs.

accounted for by the first four singular images. Fewer than 5 percent of
the data sets produced R2 values below 0.38. The OrT CDF is shifted to the
right of the R2 CDF of YP, indicating that the targeted activation pattern has
markedly enhanced salience in the OrT approach. In this comparison, there
is a 30% improvement in the median R2 value and a 65% improvement in
the R2 value below which fewer than 5 percent of the data sets produced
poorer predictions. Compared to the Helmert CVA, the OrT/CVA produced
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a 255% improvement in the median R2 value, and a 270% improvement at
the 5 percent R2 value.

An enhancement of target salience by OrT/CVA was also achieved in the
data sets in which the shadow processes exhibited no mean task differences,
as depicted in Figure 8D. The median R2 value of OrT/CVA is 0.87, indi-
cating that for half of the simulated data sets, 87% or more of the variance
of the target’s regional pattern weights was accounted for by the first four
singular images. As before, the OrT CDF is shifted to the right of the R2

CDF of YP. In this comparison, there is a 10% improvement in the median
R2 value, and a 20% improvement in the R2 value below which fewer than
5 percent of the data sets produced poorer predictions. Finally, compared to
Helmert CVA, OrT/CVA produced a 45% improvement in the median R2

value and a 50% improvement at the 5 percent R2 value.
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