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Shmuelof L, Yang J, Caffo B, Mazzoni P, Krakauer JW. The neural
correlates of learned motor acuity. J Neurophysiol 112: 971–980, 2014. First
published May 21, 2014; doi:10.1152/jn.00897.2013.—We recently de-
fined a component of motor skill learning as “motor acuity,” quanti-
fied as a shift in the speed-accuracy trade-off function for a task.
These shifts are primarily driven by reductions in movement variabil-
ity. To determine the neural correlates of improvement in motor
acuity, we devised a motor task compatible with magnetic resonance
brain imaging that required subjects to make finely controlled wrist
movements under visual guidance. Subjects were imaged on day 1 and
day 5 while they performed this task and were trained outside the
scanner on intervening days 2, 3, and 4. The potential confound of
performance changes between days 1 and 5 was avoided by constrain-
ing movement time to a fixed duration. After training, subjects
showed a marked increase in success rate and a reduction in trial-by-
trial variability for the trained task but not for an untrained control
task, without changes in mean trajectory. The decrease in variability
for the trained task was associated with increased activation in con-
tralateral primary motor and premotor cortical areas and in ipsilateral
cerebellum. A global nonlocalizing multivariate analysis confirmed
that learning was associated with increased overall brain activation.
We suggest that motor acuity is acquired through increases in the
number of neurons recruited in contralateral motor cortical areas and
in ipsilateral cerebellum, which could reflect increased signal-to-noise
ratio in motor output and improved state estimation for feedback
corrections, respectively.

fMRI; motor skill; pointing; reaching; speed-accuracy trade-off; wrist;
motor cortex; cerebellum

MOTOR SKILL is a general term that has been used to describe
improvement across a wide range of motor learning paradigms.
We recently operationally defined a component of motor skill
as the training-related change in the speed-accuracy trade-off
function for a task (Reis et al. 2009; Shmuelof et al. 2012). We
introduced the term “motor acuity” for this aspect of improve-
ment, both to contrast it with motor learning tasks that do not
emphasize improved motor execution and to draw parallels
with perceptual learning (Censor et al. 2012). Functional im-
aging has been extensively used to investigate the neural basis
of motor learning in humans, but motor acuity has been
relatively neglected. The emphasis has instead been on finger
sequence tasks, like the serial reaction time task (SRTT)
(Grafton et al. 1995; Robertson et al. 2001; Stagg et al. 2011),
and on visuomotor adaptation tasks (Diedrichsen et al. 2005;
Inoue et al. 1997; Krakauer et al. 2004). In such tasks, subjects
modify the selection of movements that are already skilled

(such as button pressing and straight reaching movements) and
so do not need to improve the acuity of the movements
themselves.

A landmark study by Karni and colleagues was an exception
to the emphasis on learning of sequence order and adaptation
in human imaging studies (Karni et al. 1995). In this study a
voxel counting method was used to show that the ability to
perform a short finger-opposition sequence faster and more
accurately was associated with an increased number of acti-
vated voxels in contralateral primary motor cortex (M1) com-
pared with an unlearned sequence, even when the two se-
quences were matched for rate and component movements
(Karni et al. 1995). The control of movement frequency is
important because changes in this parameter can lead to acti-
vation changes (Jenkins et al. 1997; Orban et al. 2011; Turner
et al. 1998). Since the study by Karni and colleagues, however,
an association between activation changes in contralateral
cortical areas and learning has been elusive. Notably, in a
recent meta-analysis of 70 imaging studies of motor learning in
humans, the authors found that there was no converging
evidence for learning-related activation in contralateral M1,
once motor execution was controlled for (Hardwick et al.
2013). This conclusion stands in apparent contradiction with
the original result by Karni and colleagues, which was not
included in the meta-analysis because a direct statistical com-
parison between learning and control tasks was not performed.
The conclusion of the meta-analysis also contradicts single-
unit and structural studies in nonhuman animal models that
have consistently shown motor learning-related changes in
contralateral motor cortical areas including M1 (Harms et al.
2008; Nudo et al. 1996; Rioult-Pedotti et al. 2000; Xu et al.
2009).

A potential explanation for the discrepancy between nonhu-
man animal studies that have shown changes in contralateral
motor cortical areas and human functional imaging studies,
which for the most part have not, is the nature of the motor
learning tasks used. We have recently argued that sequence and
adaptation tasks predominantly challenge learning processes
upstream of skilled motor execution itself (Shmuelof and
Krakauer 2011). For example, in the SRTT, the kinematics of
the movements themselves are very simple and only the re-
sponse time is relevant to the task (Nissen and Bullemer 1987).
Similarly, for visuomotor rotation, the movements themselves
are no more difficult to execute than baseline movements and
indeed show no changes in variability (Cunningham 1989;
Krakauer et al. 2000). It is notable that the studies included in
the meta-analysis reported above were classified as either
SRTT variants or sensorimotor tasks. Two other prominent
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imaging approaches are tracking tasks (Grafton et al. 2008;
Miall et al. 2001; Miall and Jenkinson 2005) and bimanual
coordination tasks (Kelso 1984) in which subjects learn to
make one-dimensional wrist movements at different frequen-
cies (Puttemans et al. 2005) or phases (Debaere et al. 2004) in
each hand. Here again, it is either tracking error in cursor space
or synchronization between two skilled movements that is
changing. In neither case does execution of the movements
themselves have to become faster or less variable. The finger
sequence task used by Karni, in contrast, requires a change in
movement kinematics and in accuracy, and therefore a change
in how movements themselves are executed (Karni et al. 1995).

With the goal of studying core aspects of motor skill learn-
ing that are not captured by adaptation or sequence tasks, we
recently devised a novel visually guided pointing task (“arc
pointing task,” APT) in which subjects control a screen cursor
through a narrow semicircular channel by rotating their hand
about the wrist, using equipment that is compatible with the
magnetic resonance (MR) scanner environment (Shmuelof et
al. 2012). This task differs from more widely used finger
sequencing tasks in that it requires precise visually guided
pointing movements that are not overlearned (unlike straight
reaching movements), allows for detailed trajectory kinematics
to be collected throughout a single movement, and makes it
possible to impose specific kinematics for single movements.
The APT is, to the best of our knowledge, the first MR-
compatible task that allows subjects to make two-dimensional
visually guided movement trajectories with the wrist, analo-
gous to arm reaches, that can be characterized kinematically.

In a recent psychophysical study using the APT, we showed
that 3 days of practice led to a change in the speed-accuracy
trade-off function for the task, driven predominantly by de-
creased variability around a fairly constant mean trajectory
(Shmuelof et al. 2012). In the present study we sought to use
functional magnetic resonance imaging (fMRI) to detect a
practice-dependent change in brain activation for the APT
while controlling for changes in movement execution. The
experiment was performed over 5 days: subjects were scanned
on day 1, trained on the APT outside the scanner on days 2, 3,
and 4, and then rescanned on day 5. We chose to perform a
multiday study because in our previous psychophysical study
variability was still coming down after 3 days of training
(Shmuelof et al. 2012); thus we reasoned that we would
increase our chances of detecting the neural correlates of this
change by allowing it to be as large as possible. Importantly,
performance of the APT on day 1 and day 5 in the scanner was
matched for kinematics: subjects performed the task at an
enforced slow speed on both days and generated the same
mean trajectories. In this way we were able to separate the
neural correlates of learning from the neural correlates of the
improved motor ability that was achieved through such learn-
ing.

It is important to clarify here why we chose a task in which
mean kinematics were matched before and after learning in the
scanner. Although motor learning leads to improved motor
performance, it is not possible to assay neural correlates of
learning by comparing brain activation at different perfor-
mance levels because execution-related changes confound the
interpretation. Instead, we recognized that the core result of
motor learning is to change motor ability, i.e., the potential or
capacity to perform at higher levels. Improved motor ability

presumably consists of stable changes in neural circuitry that
affect how a given movement is controlled. Hence, these
changes should be measurable at any level of execution.

We hypothesized that learning-induced changes in motor
acuity will be a result of improved representation of the task in
the cortical execution network, achieved through recruitment
of additional neurons. This recruitment hypothesis would be
consistent with an overall increase in task-related activation, as
measured with the blood oxygen level-dependent (BOLD)
signal in fMRI.

MATERIALS AND METHODS

Subjects. Thirteen right-handed subjects (8 women, 5 men; 18–27
yr of age), naive to the task, participated in the study. All subjects
gave written informed consent and received token compensation to
participate in the study. The study was approved by the Columbia
University Institutional Review Board.

MRI acquisition. Data were acquired on a Philips Intera 3T scanner
using a Philips SENSE head coil. The functional scans were acquired
with a gradient echo EPI, with voxel size of 3 � 3 � 3 mm (240 �
240 � 120-mm matrix); TR � 2 s, flip angle � 77°, axial slices, TE �
25 ms. Forty slices were acquired in an interleaved sequence at a
thickness of 3 mm (no gap). Ninety-six volumes were collected in
each experimental run. The first two volumes were discarded to allow
magnetization to reach equilibrium. A single T1-weighted anatomical
scan was also acquired for each subject (MPRAGE, 1 mm3). The field
of view covered the entire cerebrum and most of the cerebellum. The
inferior part of the cerebellum was not covered in some of the
subjects.

Arc pointing task outside the scanner. Subjects participated in a
protocol consisting of five daily sessions in the lab and two fMRI
scans on days 1 and 5. The sessions in the lab were composed of Test
sessions (days 1 and 5), in which the performance of subjects in the
APT was assessed at 5 movement times (MTs), and Train sessions
(days 2, 3, and 4), in which subjects performed the APT at the same
MT (see below). The APT required subjects to guide a cursor from
one circle to the other through a semicircular channel, presented on a
monitor, by moving their left (nondominant) wrist in a clockwise
direction, without crossing the borders of the channel. The width of
the channel was the same as the targets’ diameter (0.7 cm). At the
beginning of each trial, one of the two horizontal targets became white
(start circle) and the other red (target). A left white target indicated
that subjects had to make a movement through the upper semicircular
channel to the target, whereas a right white target indicated that they
had to move through the lower semicircular channel. After a variable
delay, the red circle changed to green, and a tone was played
indicating that subjects could start the movement. The cursor was
visible throughout the movement. After the trial, the entire trajectory
of the cursor appeared on the screen. During Test and Train sessions,
subjects were required to make the movements in a predefined MT
range, indicated by a computer-generated demonstration of the cursor
moving through the channel in the required MT, which was presented
at the beginning of each session block. Valid movements (inside the
channel and within MT range for the constrained blocks) were
followed by a pleasant sound and rewarded with symbolic coins in
proportion to the MT. During days 2–4 subjects trained by making
movements in a single constrained speed range (Train sessions,
520–780 ms). On days 1 and 5, subjects’ overall speed-accuracy
trade-off function was sampled by testing their performance at 5
different MTs (Test sessions, 240–420 ms, 400–600 ms, 640–960
ms, 800–1,200 ms, 1,200–1,800 ms), presented in different blocks.
Test and Train sessions in the lab lasted �1 h. For more detailed
information, see Shmuelof et al. (2012).

Arc pointing task inside the scanner. Subjects were scanned before
the Test sessions in the lab on days 1 and 5. During the scans, subjects
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performed movements with their nondominant left wrist while lying
in a supine position (Fig. 1A). They viewed, through video goggles
(Resonance Technology, Los Angeles, CA), the same display of
targets and cursor as in the behavioral sessions. A Qualysis (Gothen-
burg, Sweden) infrared camera, positioned inside the MRI room
(distance �2 m from magnet), recorded the wrist pointing direction as
the position of a spherical reflective marker on the index finger’s
proximal interphalangeal joint (the hand was closed in a fist) at a
sampling rate of 100 Hz. Subjects moved the screen cursor horizon-
tally and vertically by pointing with their closed fist (Fig. 1B). Each
subject’s forearm was placed in a splint to prevent forearm supination,
so that the screen x and y positions were mapped, respectively, to
wrist flexion-extension and radial-ulnar deviation. A laptop com-
puter (Apple, Cupertino, CA) was used to control the visual display
and to collect cursor position data with custom software.

Study design inside the scanner. Subjects performed three experi-
mental runs (Localizer, Trained, and Untrained) in the scanner on day
1 and two (Trained and Untrained) on day 5 (Fig. 1C). To obtain
maximum sensitivity to task effects, a block design was used. Hori-
zontal (Trained) and vertical (Untrained, control) versions of the APT
(see below) were performed in separate runs before and after training.
Six movements were performed in 18-s blocks (repeated 6 times) at a
slow speed (1.5 s per movement). Movement blocks were interleaved
with 12-s rest periods.

During rest periods, subjects were instructed to relax their wrist and
wait for the visual cue indicating the beginning of the next block.
During the movement blocks, subjects performed semicircular move-
ments through a channel (0.7 cm wide) between two circular targets
(0.7-cm diameter) separated by 4.4 cm. These dimensions refer to the
position of the reflective marker as recorded by the motion capture
camera. In each trial, subjects moved the cursor from one target to the

other in a curved clockwise motion, attempting to keep the cursor
within the arc channel (Fig. 1B). The “go” signal for each movement
was a visual cue (target color changed from red to green). The
instruction to the subjects was to move the cursor between the targets
without crossing the boundaries of the channel, and to maintain the
required MT.

During movement blocks, subjects received online feedback of
cursor position but no further information about their success or
failure, or about their movement speed. To control for MT across
sessions, subjects had a short training session before the experimental
run, in which feedback about MT was given.

Tasks. Subjects performed three types of movement task. The
Trained task consisted of APT movements as described above with
the two targets arranged along a horizontal line, in the same config-
uration as during the behavioral training in the lab. The Untrained task
differed in the target arrangement, which was vertical (rotated in 90°)
and was never practiced outside of the scanner. In both tasks, move-
ments were always made in a clockwise direction (Fig. 1B). In
addition, subjects performed a Localizer task on day 1, which served
as a functional localizer to identify brain areas involved in planning
and execution of visually guided left wrist reaching movements.
Subjects had to guide a cursor between a start target (diameter 0.7 cm)
presented at the center of the screen and targets (diameter 0.7 cm)
presented 3.5 cm to the left and to the right of the start target by
making a sequence of straight out-and-back visually guided move-
ments. As for the APT experiments, this task had a block design: six
out-and-back movements were performed in each 18-s block.

Imaging analysis. Preprocessing and computing activation maps
were all performed with Brain Voyager QX 1.10 (Brain Innovation,
Maastricht, The Netherlands). Before statistical analysis, head motion
correction using trilinear interpolation, high-pass temporal filtering in
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Fig. 1. A: experimental setup in the MRI scanner. Subjects
performed the arc pointing task (APT) task while lying
supine and moving their left wrist. The position of the
marker was captured by the infrared camera that was posi-
tioned in the scanner room. Subjects received feedback
through goggles. B: sample hand paths from the Trained
(top) and Untrained (bottom) tasks, recorded in the scanner,
before (gray, day 1) and after (black, day 5) training. The
task was to move the cursor in a clockwise direction from
one circle to the other through a circular channel, without
crossing the channel’s boundaries. Day 1 trajectories show
greater trial-to-trial variability than day 5 trajectories for the
Trained task but not for the Untrained task. C: experimental
protocol. Subjects participated in a 5-day protocol, which
was composed of 5 daily sessions in the lab and 2 MRI
scans on days 1 and 5. After the MRI sessions a speed-
accuracy trade-off function (SAF) for the APT was derived
for each subject.
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the frequency domain (3 cycles/total scan time), and spatial smoothing
(FWHM � 8 mm) was applied to remove drifts and to improve the
signal-to-noise ratio (SNR). The first two functional images of each
run were discarded to allow for stabilization of the signal. Functional
images were incorporated into the three-dimensional data sets through
trilinear interpolation and transformed into Talairach space and Z-nor-
malized. Group analysis was performed with a random-effects mul-
tisubject general linear model (GLM). Regressors were defined as a
boxcar function peaking during each block, convolved with a two-
gamma hemodynamic response function. The task � day interaction
analysis was performed with the Brain Voyager QX ANOVA/
ANCOVA module.

Voxel-based analysis. We constrained the voxel-based analysis to
the execution network for visually guided wrist movement, using a
mask generated from the multisubject contrast map of the functional
localizer scan obtained during performance of the Localizer task on
day 1 (straight reaching movements � rest, P � 0.05). To correct for
multiple comparisons, a cluster threshold of 112 contiguous functional
voxels was used for the mask contrast and a cluster threshold of 19
contiguous functional voxels was used for the rest of the contrasts.
The thresholds were computed with a Brain Voyager QX Cluster-
level Statistical Threshold Estimator plug-in by running 1,000 itera-
tions of a Monte Carlo simulation to estimate the probability of
getting a cluster of a given size by chance (taking into account the
number of activated voxels and spatial smoothing).

Global ranking analysis. We designed a nonparametric analysis to
capture global changes in activation following training. This analysis
was based on individual unmasked and unsmoothed images. For each
voxel, the contrast for the day effect comparing the Trained and
Untrained tasks was computed based on first-level standard GLM
(Friston et al. 1994) images computed in SPM5 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm5) after slice time correction, high-pass
filter (5 cycles per scan), and image normalization to a standard brain
using 4th-degree B-spline interpolation. Ranks (integers representing
orderings for all contrast estimates in the ROI) were calculated
regardless of condition for each subject. The sum of the ranks across
conditions is the sum of the integers from 1 to the number of voxels
in the image (V) times the number of conditions (C), which is equal
to C � V(C � V � 1)/2. This ranking procedure is identical to
calculating a Wilcoxon rank sum statistic. The subject-specific pro-
portion of the rank values devoted to each condition was then
calculated and subsequently averaged over subjects within conditions.
The average proportion in the first condition was retained as a test
statistic. A low value of this statistic generally represents lower
activation contrast values for this condition relative to the other and
vice versa for a high value. A null distribution was obtained by
permuting the condition labels within subjects and recalculating the
statistics values. The result is a robust nonparametric test of contrast
differences using the ensemble of voxels rather than separate interac-
tion tests per voxel.

Behavioral analysis. Custom routines written within the IGOR
software package (WaveMetrics, Lake Oswego, OR) were used to
compute error rate, MT, peak speed, and average trajectory. Cursor
position data were low-pass filtered (zero-lag, 3rd-order Butterworth
filter, cutoff frequency 14 Hz). A trial was considered an error if the
cursor’s radial position exceeded the channel’s boundaries or if the
cursor did not reach the target by the end of the trial duration (1.5 s).
Error rate is the fraction of error trials out of all trials. Error rate, MT,
and peak speed comparisons were performed with paired t-tests for
the behavioral data from the scanner and an ANOVA for the behav-
ioral data obtained in the laboratory. For average trajectory and
variance calculations, we discarded from each movement the first and
last 10° of cursor position, corresponding to the area within the initial
and final targets (polar coordinate angle relative to an origin midway
between the 2 targets). Trajectories were then interpolated to 200
points, using linear interpolation. Correction for multiple comparisons
when comparing the averaged trajectories and the trial-by-trial vari-

ability measures was conducted with a random field Gaussian distri-
bution correction for temporal correlation in the data (Shmuelof et al.
2012). This analysis focused on the time-normalized radial position of
the cursor, which was the task-relevant control variable, using paired
t-tests run repeatedly for every normalized time point (n � 200). To
correct for the probability of false positives due to multiple compar-
isons, we addressed temporal correlations in the data that resulted
from temporal smoothing. Corrected thresholds were thus computed
based on the estimated number of truly independent samples present
within the sampled vector using random field theory (Worsley et al.
1992).

RESULTS

Subjects showed improvement in the trained APT both in
and outside the scanner. Subjects showed a significant im-
provement in APT performance across the tested range of
movement times MTs when assessed outside the scanner after
3 days of training (comparison of performance on days 1 and
5, P � 0.001; Fig. 2A). Consistent with our previous report
(Shmuelof et al. 2012), the improvement generalized to MTs
not experienced during training.

During the imaging sessions on days 1 and 5, subjects
performed both the Trained (horizontal arc; Fig. 1B) and
Untrained (vertical arc) tasks. The Untrained task was intro-
duced to control for a possible order effect: putative learning-
related imaging effects for the Trained task on day 5 might
instead be a nonspecific effect of performing the same task
twice in the scanner regardless of training. If activation
changes were merely due to an order effect, comparable
activation changes would be seen from day 1 to day 5 for the
Untrained task. Subjects showed improvement in accuracy for
the Trained APT performed in the scanner from day 1 to day
5 (P � 0.007; Fig. 2B) with no associated change in MT (P �
0.38; Fig. 2B), peak movement speed (P � 0.362), and mean
trajectory (P � 0.05 throughout the trajectory; see MATERIALS

AND METHODS). Crucially, the Trained task showed a decrease in
trial-by-trial variability, with a maximal F value of 16.278
(P � 0.001; Fig. 2, C and E). The improvement in performance
in the scanner is consistent with the behavioral results obtained
outside the scanner (Fig. 2A). The observed reduction in
variability is consistent with our previous behavioral work that
showed reduction in trial-by-trial variability following training
in the APT (Shmuelof et al. 2012). The Untrained task did not
show changes in movement speed, MT, mean trajectory, and
mean variability across days (P � 0.29, P � 0.31, and P �
0.05, respectively; Fig. 2B).

There was a significant difference in the degree of improve-
ment for the Trained compared with the Untrained task (P �
0.049; Fig. 2B). The small improvement for the Untrained task,
although not significant (P � 0.15), likely reflects partial
generalization from the horizontal to the vertical task. It should
be emphasized that we were looking for neural and behavioral
differences between the Trained and Untrained tasks; such
differences are not dependent on an absence of changes for the
Untrained task.

Skill learning was associated with changes in contralateral
motor cortical areas and ipsilateral cerebellum. The functional
imaging data were analyzed with a GLM (Friston et al. 1994).
We were specifically interested in learning-related activation
changes in brain areas associated with execution of wrist
movements. Therefore the voxelwise analysis was constrained
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to the execution network for visually guided pointing move-
ments of the left wrist. We used a localizer scan based on
straight reaching movements of the left wrist on day 1 to
identify the wrist movement network (Fig. 3A, Table 1).
Notably, the mask was constructed based on the averaged
contrast image from the Localizer scan using a low threshold of
P � 0.05 (cluster size correction of 112 functional voxels),
resulting in an inclusive mask of the execution network for
wrist reaching movements.

Separate contrast maps were generated for a comparison
between task-related activation patterns for days 1 and 5 (P �
0.01, cluster size correction of 19 contiguous functional vox-
els) within the task mask (Fig. 3A, Table 1) for the Trained
(Fig. 3B, Table 1) and Untrained (Fig. 3C) tasks. Training on
the horizontal APT was associated with increased activation in
contralateral M1, contralateral dorsal premotor cortex (dPMC),
and contralateral anterior intraparietal cortex (AIP), supple-
mentary motor cortex (SMA), and ipsilateral cerebellum (Fig.
3B, Table 1). There were no significant reductions in activation
following training within the task mask. For the Untrained

vertical APT, there were no significant activation increases or
decreases (Fig. 3C).

To quantitatively test whether acquisition of skill could be
associated with a net global increase in activation across all
voxels in the unmasked brain, we designed a nonparametric
ranking procedure to compare the distributions of activation for
all unthresholded voxels before and after training (see MATERIALS AND

METHODS). For every subject, day 5 and day 1 activation values
for the Trained task from every voxel were ranked together.
The proportion of ranks for day 5 activation values was then
computed and compared to a null distribution, obtained by
permuting condition labels within subjects. The average pro-
portion of ranks across subjects for day 5 observations was
0.52, which was significantly higher than chance (P � 0.03,
see MATERIALS AND METHODS), indicating a global increase in
activation for the Trained task following training. A similar
analysis for the Untrained task did not indicate a global change
in activation after training (0.5, P � 0.68).

Increases in activation were greater for the Trained task.
While the voxelwise and ROI results showed that the Trained
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showed reduction in error rate in all measured speeds, i.e., a shift across the SAF to a higher level of performance. Error bars denote SE. B: performance measures
from the Trained (T) and Untrained (UT) tasks (performed in the scanner). *P � 0.05; **P � 0.01. Left: error rate reduction following training for the Trained
(filled bars) and Untrained tasks (open bars). Center: subjects did not significantly change MT in either task after training. Right: improvement was greater for
the Trained task. Error bars denote SE. C: average trial-by-trial variability from day 1 (gray) and day 5 (black) scanning sessions of the Trained task. Averaged
variability is plotted against normalized time. After training, there was a reduction in variability mainly during the first half of the movement. Error bars denote
SE. D: average trial-by-trial variability from day 1 (gray) and day 5 (black) scanning sessions for the Untrained task. Averaged variability is plotted against
normalized time. Variability for the Untrained task did not change with time. E: comparison of variability measures across days: day effect (F values) as a
function of normalized time. Dotted horizontal line represents the threshold (corrected for multiple comparisons) above which F values are statistically significant.
Significant changes in variability can be seen for the Trained task (solid line) but not for the Untrained task (dashed line).
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horizontal APT was associated with significant changes in
activation and the Untrained vertical APT was not, these
results are not sufficient to establish a selective learning effect
for the Trained APT compared with the Untrained APT.
To reach this conclusion it is necessary to show a significant
day � task interaction (Nieuwenhuis et al. 2011). There were
significant day � task interactions for the voxelwise analysis in
contralateral dPMC, in SMA, and in the ipsilateral cerebellum
(Fig. 3D, Table 1).

Given the low sensitivity of the voxel-based analysis, we
also used a global multivariate approach to show a day � task
interaction for activation across all unthresholded and un-
masked voxels. For the global interaction measure we used the
same ranking analysis as described above, but this time ranked
according to day 5 � day 1 activation values in each voxel for
both the Trained and Untrained tasks together. The average
proportion of ranks across subjects for the Trained task turned
out to be 0.53, indicating that voxels changed more for the
Trained than the Untrained task. Permutation analysis showed
that the average proportion of ranks was significantly different
from the null distribution (P � 0.03). Figure 4 demonstrates

the shift of the distribution of the day 5 � day 1 activation
pattern for the Trained task compared with the Untrained task
for a single subject.

In summary, when kinematics were successfully constrained
on day 1 and day 5 (same MT and average trajectory) for both
the Trained horizontal APT and the Untrained vertical APT,
there were significant learning-related increases in activation
for the Trained task in contralateral motor cortical areas and in
the ipsilateral cerebellum. Corroborating these results, a global
test of activation across all voxels showed that there was
greater activation overall for the Trained task compared with
the Untrained task.

DISCUSSION

We sought to dissociate brain activation related to motor
learning from brain activation related to motor execution. We
were specifically interested in the neural correlates of de-
creased movement variability (improved motor acuity) when
controlling visually guided cursor trajectories with the wrist.
We found learning-related increases in activation in contralat-
eral motor cortical areas and in the ipsilateral cerebellum when
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Fig. 3. A: blood oxygen level-dependent (BOLD) activation increase associated with the wrist localizer task. Voxel-based and ROI analyses were masked by mean
activation pattern for straight reaching movements with the left wrist (Localizer scan, wrist movements � baseline). Average activation patterns are shown on
inflated brain surfaces. Average activation in the cerebellum is shown on a coronal slice (y � �50). Reaching movement with the wrist was associated with a
broad increase in activation in both hemispheres, in visual and motor areas and in the cerebellum. B: contrast map for the Trained task. Subjects were scanned
while performing the Trained horizontal arc task before and after training (on days 1 and 5). A contrast analysis between day 1 and day 5 activation patterns
within the task mask (subset a) is shown. Increase in activation after training is shown in red-yellow colors; decrease in activation is shown in blue-green colors
(color coding is shown at bottom right). Training in the APT was associated with increased activation in the right primary motor, premotor, and supplementary
motor cortices. Reduction of activation after training was not detected. C: contrast map for the Untrained vertical arc task. A contrast analysis for the Untrained
task within the task mask did not result in any significant change in activation. D: task � training interaction analysis. An interaction analysis (using ANCOVA)
between training (day 1 vs. day 5) and task (Trained vs. Untrained) within the task mask resulted in significant activation in premotor dorsal and supplementary
motor cortex.
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the task was performed with matched kinematics on the pre-
and posttraining days.

We have recently suggested that it is motor acuity that
requires learning-related changes in contralateral primary and
premotor cortical areas (Krakauer and Mazzoni 2011; Shmu-

elof and Krakauer 2011). Studies of motor learning in rodents
have consistently shown changes in contralateral M1 after
practice on visually guided pellet prehension tasks (Greenough
et al. 1985; Kargo and Nitz 2004; Kleim et al. 2002; Xu et al.
2009). These changes, which take days to weeks to develop,
include expansion in motor maps, long-term potentiation, and
synaptogenesis. In one study, rats were trained on a pellet
prehension task over 12 days. Over the first 6 days, pellet
retrieval success rates were associated with changes in the
action selected and changes in the ratio of muscle activation for
a particular EMG pattern. Reduction in the variability of the
muscle recruitment pattern only occurred over days 7–12, and
it was only this reduction in variability that correlated with
improvements in SNR in M1 cells (Kargo and Nitz 2004). This
result is entirely consistent with our results: the APT was
designed to emphasize variability reduction over action selec-
tion. This result also provides a potential explanation for why
so many human imaging studies have not shown learning-
related changes in contralateral motor cortical areas after con-
trolling for execution. The kind of learning seen in the first 6
days in the rat study is probably what is being emphasized in
most human studies, namely, adaptation and action selection
rather than motor acuity.

In previous work we have shown that training on the APT at
slow speeds leads to improvements at untrained fast speeds
(Shmuelof et al. 2012). We suggested that this generalization
supports a representation of skilled movements that can be
scaled across a range of difficulty (speed) levels. This idea is
supported by our present result that learning-related activation
was detectable even when performing at a slow speed. One
possibility is that specific arrangements of controllers in M1
can be learned and associated with task-specific synergies. A

Table 1. Execution- and learning-related brain activation: summary of activation loci for execution- and learning-related contrasts

Region Cluster Size, mm3

Talairach Coordinates

t-ValuePeak X Peak Y Peak Z

Wrist movement day 1 � baseline (Localizer task, P � 0.05, cluster size correction)

lPMC 10,763 33 �13 52 6.45
SMA 10,506 4 �8 54 7.25
rM1 24,365 25 �23 48 10.65
rAIP 12,858 22 �56 48 9.72
lAIP 13,167 �20 �62 54 11.37
rLOG 18,251 43 �70 7 10.43
lLOG 23,615 �44 �71 3 13.99
rPut 7,092 22 4 6 6.52
lPut 4,427 �26 1 0 4.78
rCBL—lobe VI 14,729 31 �59 �18 10.43
lCBL—lobe VI 21,287 �29 �53 �18 12.82
lCBL—lobe V 18,534 �2 �59 �12 10.62

Trained task day 5 � day 1 (P � 0.01, cluster size correction)

rM1 2,811 19 �21 63 3.29
rdPMC 1,378 23 �8 57 4.11
SMA 5,006 �4 �14 54 7.53
rAIP 596 �44 �37 47 2.06
lCBL—lobe V 1,340 2 �50 �9 4.70

Task � day interaction (P � 0.01, cluster size correction)

rdPMC 1,619 11 �14 66 3.71
SMA 1,065 �4 �14 54 4.57
lCBL—lobe V 2,104 �5 �47 �12 5.02

dPMC, dorsal premotor cortex; SMA, supplementary motor cortex; M1, primary motor cortex; AIP, anterior intraparietal cortex; LOG, lateral occipital gyrus;
Put, putamen; CBL, cerebellum.

D
en

si
ty

Fig. 4. Sample of the global interaction analysis from a single subject:
distribution of the training effect (day 5 � day 1) of all voxels for the Trained
(black) and Untrained (gray) tasks. The Trained distribution is shifted to the
right of the Untrained distribution, indicating fewer negative values and more
positive values relative to the Untrained.

977fMRI STUDY OF MOTOR VARIABILITY

J Neurophysiol • doi:10.1152/jn.00897.2013 • www.jn.org

on A
ugust 26, 2014

D
ow

nloaded from
 



fairly simple scalar input control onto these cortical represen-
tations could then allow these synergies to scale across speeds
(d’Avella et al. 2008; Overduin et al. 2012). The degree of task
specificity of these synergies is yet to be determined. The lack
of a significant task � day interaction in M1 may support a
partial overlap between learned synergies for the two tasks
performed with the same effector. Thus we would conjecture
that the nonsignificant interaction effect for the trained versus
untrained task in M1 is due to generalization rather than a lack
of learning-related changes in this region.

We found that training in the APT was associated with
increases in activation in motor cortical areas and the cerebel-
lum without any significant decrease in activation (Fig. 2B). In
contrast, previous studies of motor learning that have focused
on average activity changes, as we did here, have shown both
increases and decreases in activation in several brain areas
(Kelly and Garavan 2005; Petersen et al. 1998; Steele and
Penhune 2010; Wu et al. 2004). Increased accuracy and pre-
cision in motor performance with training are presumably
driven by increased SNR in brain representations. There is
evidence from the perceptual learning literature that there are at
least two cortical mechanisms for increasing SNR (Reed et al.
2011; Yang et al. 2009). Training-related improvements in
frequency discrimination in rats are first associated with audi-
tory cortex map expansion and then with map renormalization
(Reed et al. 2011). The expanded representation may improve
encoding through summation over more units, while selective
stabilization of specific dendritic spines during the renormal-
ization phase may be associated with improved encoding
through selection of the most informative units, i.e., through
reduction in the noise correlations between task-related units
(Bejjanki et al. 2011). Increased accuracy and precision in
motor performance with training, as for perceptual learning,
are presumably also driven by increased SNR in brain repre-
sentations. It may be that the reported bidirectionality of brain
activation responses in motor learning tasks (Dayan and Cohen
2011; Hardwick et al. 2013) reflects the fact that the SNR can
be improved by either increases in the number of neurons
recruited for a task or selection of a subset of neurons specif-
ically tuned to the task. The former would lead to increases in
average activation and the latter to decreases. The relative
balance of these competing mechanisms for a learned repre-
sentation may be dependent on a variety of factors that include
the task itself and the time spent practicing the task. Thus we
propose that in our task motor acuity was associated with an
increase in the number of neurons recruited. It is possible that
with more prolonged training we would have seen activation
return to day 1 levels (Puttemans et al. 2005; Reed et al. 2011;
Xu et al. 2009). It should be noted that although statistical
maps cannot distinguish increased extent (more voxels) from
increased intensity (increased activation of same number of
voxels), the latter would decrease, not increase, SNR.

A new approach to the study of learning is to use multivoxel
pattern analysis (Cox and Savoy 2003; Kamitani and Tong
2005). With this approach it has been shown that improvement
in perceptual orientation discrimination was associated with
increased orientation discrimination in the BOLD signal taken
from visual areas, without any changes in average activation in
the same areas (Jehee et al. 2012). In the motor domain, it has
recently been shown that those areas that showed the largest
learning-related increases in classification accuracy of four

separate trained finger sequences were in areas that showed no
changes in average activation (Wiestler and Diedrichsen 2013).
Areas that did show a change in average activation for the
direct contrast between trained versus untrained sequences
showed decreases in activation (bilateral dPMC and along the
intraparietal sulcus) and no increases. How to reconcile these
results with our and other studies (in multiple species) that
suggest a predominant role for contralateral motor cortical
areas for skill? In the study by Wiestler and Diedrichsen,
subjects executed sequences faster by overlapping presses of
each individual finger (Wiestler and Diedrichsen 2013). There
was no measure of precision of either the individual finger
presses or the two-finger transitions. Thus it could be argued
that subjects were learning to choose the specific finger tran-
sitions needed for each sequence through a better representa-
tion of each sequence, i.e., faster selection of the required
transitions. The ability to quickly execute any particular tran-
sition may, however, already have been at ceiling before
learning even began. The decrease in mean activation in this
case could be a result of the reduction in the cognitive effort
required to select the right sequence of finger presses. Indeed,
such automatization effects in sequence learning have been
shown to be associated with reduction in activation in cortical
motor areas (dPMC, SMA, and parietal regions) (Puttemans et
al. 2005; Wu et al. 2004). Thus sequence tasks may for the
most part emphasize action selection over action execution. In
our task, in contrast, it is clear to subjects from the outset what
action is needed, down to the submovements, and it is the
variability of this single action that needs to be reduced with
training. An increase in neural bandwidth may only be needed
when speed and accuracy of a particular action increase and not
when the only difference is whether the actions are released in
parallel rather than serially.

It is important to avoid the error of reverse inference when
speculating about the meaning of the activations observed in an
imaging study (Poldrack 2006). Our main prediction was that
contralateral motor cortical areas would show a learning effect
if the task emphasized the requirement for motor acuity. That
said, we were agnostic as to whether we would see a learning
effect in the ipsilateral motor cerebellum or not; we observed
increased activation in lobule V of the anterior lobe, which has
been shown to be involved in visuomotor rotation learning
(Donchin et al. 2012). The cerebellum is a critical structure for
adaptation, returning behavior to baseline levels in the setting
of external perturbations and maintaining a calibrated forward
model of an ever-changing plant (Barash et al. 1999; Tseng et
al. 2007). What is not clear is the degree to which the cere-
bellum is involved in improving motor acuity. We have re-
cently shown that feedback-based corrections improve from
day 1 to day 5 in the APT (Shmuelof et al. 2012). Such
improved feedback responses could occur through improved
state estimation by the cerebellum. In this framework, the
decrease in variability seen with learning could be due to more
precise feedback corrections enabled by the cerebellum and
increased SNR via increased neuronal recruitment in motor
cortical areas. The learning-related activation we observed in
the cerebellum was medial to the previously reported hand area
in superior cerebellar cortex (lobules V and VI) (Grodd et al.
2001; Kuper et al. 2012; Rijntjes et al. 1999). Indeed, we saw
cerebellar activation in this hand area in our Localizer task
(Fig. 3A). Changes in activation associated with learning a new
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internal model also occur outside the cerebellar hand area
(Imamizu et al. 2000). The results of this previous study and
our present study suggest that both acquisition of a new
forward model and improvement of state estimates in an
existing forward model may depend on the same cerebellar
representation.

An alternative explanation for our results could be that the
activation differences are driven by differences in observed
errors before and after training. Indeed, both motor cortical
areas and the cerebellum have been shown to have error-related
activation (Diedrichsen et al. 2005; Imamizu et al. 2000;
Schlerf et al. 2012). Critically, however, in these cases, acti-
vation increased as errors increased and, in the case of the
cerebellum, occurred in the hand area. Here we show that
activation increased with training as errors decreased and this
activation was medial to the previously reported error-related
cerebellar hand area activations.

Conclusions. We show that improvements in motor acuity
over days are associated with learning-related increases in
activation in areas within the baseline execution network:
contralateral motor cortical areas and the ipsilateral cerebel-
lum. A global nonlocalizing analysis confirmed that learning
was associated with net increases in activation. Thus the
observed decreases in movement variability could be ac-
counted for by a learning-related increase in the number of
neurons recruited for the task. We conclude that when humans
improve in the performance of a task that in many ways can be
considered an analog for visually guided reaching, learning-
related changes occur within the execution network in a man-
ner analogous to that seen in rodent and nonhuman primate
models (Nudo et al. 1996; Xu et al. 2009).
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