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aptation of the motor system to sensorimotor perturbations is a type of
learning relevant for tool use and coping with an ever-changing body.
Memory for motor adaptation can take the form of savings: an
increase in the apparent rate constant of readaptation compared with
that of initial adaptation. The assessment of savings is simplified if the
sensory errors a subject experiences at the beginning of initial adap-
tation and the beginning of readaptation are the same. This can be
accomplished by introducing either 1) a sufficiently small number of
counterperturbation trials (counterperturbation paradigm [CP]) or 2) a
sufficiently large number of zero-perturbation trials (washout para-
digm [WO]) between initial adaptation and readaptation. A two-rate,
linear time-invariant state-space model (SSMLTI,2) was recently
shown to theoretically produce savings for CP. However, we reasoned
from superposition that this model would be unable to explain savings
for WO. Using the same task (planar reaching) and type of perturba-
tion (visuomotor rotation), we found comparable savings for both CP
and WO paradigms. Although SSMLTI,2 explained some degree of
savings for CP it failed completely for WO. We conclude that for
visuomotor rotation, savings in general is not simply a consequence of
LTI dynamics. Instead savings for visuomotor rotation involves meta-
learning, which we show can be modeled as changes in system
parameters across the phases of an adaptation experiment.

I N T R O D U C T I O N

Perturbations to either environment or physical plant, as well
as direct experimental manipulations of sensory feedback, can
induce sensory error: a discrepancy between observed and
predicted sensory feedback. Motor adaptation refers to when
sensorimotor mappings change to reduce sensory error over
successive movements. Adaptation can be modeled with state-
space models (Cheng and Sabes 2006) that have sensory error
(or perturbation) as input, sensorimotor mappings as hidden
variables (states), and adaptation responses as output. Adapta-
tion may reflect how the CNS establishes and maintains sen-
sorimotor mappings throughout normal life (Kording et al.
2007). Memory for a newly learned mapping/state can take at
least two forms: aftereffects [persistence of the adapted state
into readaptation (Yamamoto et al. 2006)] and savings [a faster
rate of readaptation compared with that of initial adaptation
(Kojima et al. 2004; Krakauer et al. 2005)]. To assess savings
independently of aftereffects, starting states for initial adapta-
tion and readaptation should be equated. Thus far only two
studies that meet this requirement have shown savings—one of

saccadic adaptation (Kojima et al. 2004) and our previous
study of rotation adaptation for reaching movements (Krakauer
et al. 2005). Aftereffects were eliminated in the saccade study
by inserting counterperturbation trials between initial adapta-
tion and readaptation (counterperturbation paradigm [CP]).
Aftereffects were eliminated in the rotation study by inserting
instead sufficient zero-perturbation trials to washout memory
of the initial adaptation phase (washout paradigm [WO]).

Motivated by findings from the saccadic adaptation study
(Kojima et al. 2004), Smith and colleagues (2006) demon-
strated via simulation that a linear time-invariant (LTI) state-
space model (Cheng and Sabes 2006; Donchin et al. 2003;
Thoroughman and Shadmehr 2000) with two states (slow and
fast) produces savings in CP. It is helpful to understand that
this model (which we will refer to as SSMLTI,2), as well as any
LTI SSM used to model adaptation, can be mathematically
represented in various ways. For example, Smith and col-
leagues (2006) chose to express output in terms of net senso-
rimotor mapping. However, output can be equivalently ex-
pressed in terms of sensory error. Likewise, input can be
expressed either in terms of sensory error or perturbation. The
point here is that, regardless of the specific form, an LTI
system obeys superposition: the output to a sum of inputs
equals the sum of the outputs to the individual inputs. There-
fore no matter whether adaptation is expressed in terms of
sensorimotor mapping or sensory error, savings produced by
SSMLTI,2 in CP results not from a change in system parameters
between initial adaptation and readaptation, but rather from
superposition of the adaptation responses to the perturbations
corresponding separately to the 1) initial adaptation, 2) coun-
terperturbation, and 3) readaptation phases of CP (Fig. 1).

Given that LTI systems obey superposition, we reasoned
that the SSMLTI,2 could not explain savings in a WO paradigm:
Assuming a stable LTI SSM, application of some fixed, non-
zero perturbation causes the state (i.e., the sensorimotor map)
to change trial by trial such that sensory error is reduced. If
from some trial onward, the perturbation is set to zero (i.e.,
washout trials are applied), the sensorimotor map must ap-
proach in the limit the same value it had prior to the initial
adaptation. Thus with a sufficient number of washout trials the
sensorimotor map will be arbitrarily close to this initial, naive
value (corresponding to elimination of aftereffects). Therefore
respecting superposition, the larger the number of washout
trials, the closer the net adaptation response during the read-
aptation phase of a WO paradigm will be to the adaptation
response (time-shifted, of course) to the initial adaptation. Thus
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in the limit there would be no savings. The same point was
made by Smith and colleagues (2006) in that they showed via
simulation for SSMLTI,2 that as the number of washout trials
inserted between the counterperturbation and readaptation
phases in CP increased (i.e., as CP was converted into WO),
the amount of savings tended to zero. Figure 2 illustrates the
adaptation responses of the SSMLTI,2 in a WO paradigm when
the number of washout trials was sufficient to effectively
“isolate” the adaptation response during the readaptation phase
from that of the initial adaptation phase, leading to a lack of
appreciable savings.

Here we measured savings as a change in rate constants
rather than as a change in rates, to further avoid contamination
by aftereffects. When modeling rate constant savings, there is
an important distinction to be made (as implied earlier) be-
tween apparent rate constants (the empirical rate constant
evident during a particular phase of an adaptation experiment)
and system rate constants (model parameters that determine the
input–output relationship of the system). Our goal for modeling
rate constant savings, then, was to determine whether changes in
apparent rate constants were best explained with a system whose
parameters do (varying-parameter SSM: SSMVP) or do not
(SSMLTI) change with experience. A system displaying sav-
ings as a result of a change in parameters would correspond to
metalearning. We first demonstrated rate constant savings for

both CP and WO using the same task (planar reaching move-
ments) and the same type of perturbation (visuomotor rota-
tion). Then, in each paradigm, for the one- and two-rate
SSMLTI and SSMVP, we 1) assessed the ability of each SSM to
explain rate constant savings and 2) quantified model parsi-
mony with the information-theoretic measure Akaike Informa-
tion Criterion (AIC) (Akaike 1974; Bozdogan 1987; Burnham
and Anderson 2002) to ensure that any potential superiority of
SSMVP over SSMLTI with regard to explanation of savings was
not offset by overparameterization.

M E T H O D S

Subjects

A total of 14 right-handed subjects volunteered for the study. All
were naive to the purpose of the study, signed an institutionally
approved consent form, and were paid to participate. They were
randomly assigned to either the CP [n � 6; mean age (SD) � 25.8
(6.6) yr; 3 M] or the WO [n � 8; mean age (SD) � 22.1 (0.6) yr; 6
M] experiments.

General experimental protocol

Subjects sat and moved a hand cursor by making planar reaching
movements with the shoulder and elbow over a horizontal surface
positioned at shoulder level. A center start position and a single target

FIG. 1. Illustration of superposition for two-rate, linear
time-invariant state-space model (SSMLTI,2) [aslow � 0.992,
bslow � 0.02, afast � 0.59, bfast � 0.21, taken from the empirical
estimates reported by Smith and colleagues (2006)] in the
counterperturbation paradigm (CP). See Eq. 2 in the main text
for the state-space model. The left column shows the input
perturbation functions (abscissa is movement number n),
whereas the right column shows both the outputs [equivalently
in terms of directional error (red) and net sensorimotor map
(black)] and the state variables [slow (blue) and fast (green)].
The rows correspond to a decomposition of the net input [(from
top): initial adaptation stimulus, counterperturbation stimulus,
readaptation stimulus, summed inputs]. As a consequence of
superposition, the shaded plot in the bottom right corner is
equal to both 1) the sum of the outputs to the separate inputs
(sum down right column) and 2) the output to the summed
inputs (transform from left to right in the bottom row). In the CP
paradigm, superposition leads to obvious savings (i.e., a faster
apparent rate of adaptation during the readaptation phase com-
pared with the initial adaptation phase). Perturbation function
for this CP paradigm: 0° for 1 � n � 10, 30° for 11 � n � 100,
�30° for 101 � n � 103, 30° for 104 � n � 150.
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(45° clockwise from the 12 o’clock position, diameter 2 cm, 6 cm
from start position) was projected onto a computer screen positioned
above the arm. This same, single target position was used throughout
the entire experiment in both CP and WO paradigms (i.e., target
position was not varied across trials, subjects, or paradigms). A
mirror, positioned halfway between the computer screen and the table
surface, reflected the computer display, producing a virtual image of
the screen cursor and the target in the horizontal plane of the finger tip.
Hand positions calibrated to the position of the finger tip were
monitored using a Flock of Birds (Ascension Technology, Burlington,
VT) magnetic movement recording system at a frequency of 120 Hz.
Anterior–posterior translation of the shoulder was prevented with a
rigid frame around the trunk. The wrist, hand, and fingers were
immobilized with a splint and the forearm was supported on an
air-sled system. An opaque shield prevented subjects from seeing their
arms and hands at all times.

Visuomotor rotation paradigms

There were two experimental paradigms, which involved the inser-
tion of either counterperturbation (CP) or washout (WO) trials be-
tween initial adaptation and readaptation, respectively. A single target
position was used in both paradigms (see General experimental
protocol). The sign convention used for rotation was that counter-
clockwise rotation corresponded to positive angles. In both paradigms
subjects were first familiarized with 40 baseline trials (0° rotation). In
CP they then performed 80 trials of a �30° rotation (initial adapta-

tion) followed by 8 trials of a �30° rotation (counterrotation) fol-
lowed by another 80 trials of the �30° rotation (readaptation). In WO,
after the baseline trials subjects performed 80 initial adaptation trials
with a �45° rotation followed by 40 trials of 0° rotation (washout)
followed by 80 readaptation trials with �45°. The reason we chose a
rotation magnitude of 45° for the WO paradigm was to increase the
signal-to-noise ratio of the adaptation data relative to our previous
study, which used 30° (Hinder et al. 2007; Kojima et al. 2004;
Krakauer et al. 2005). We would have chosen a 45° rotation magni-
tude for CP as well, but chose not to because a �45° rotation would
have meant an initial error of �90° in the deadaptation phase; errors
of this size may provoke cognitive strategies (Imamizu et al. 1995),
which we sought to avoid. We empirically address this potential
confound of different rotation magnitudes early in the RESULTS section.

Measurement of savings

In both CP and WO paradigms, apparent first-order rate constants
were estimated (via nonlinear least squares) per subject separately for
initial adaptation and readaptation from the first 30 values of direc-
tional error e[n] according to

e�n� � aecn � b (1)

where n is movement number, c is the rate constant (in units of
movements�1), and a and b are additional free parameters (both in
units of degrees). Src was defined as cinitial adaptation minus creadaptation.

FIG. 2. Illustration of superposition for SSMLTI,2 in the
washout paradigm (WO). Formatting and system constants are
the same as in Fig. 1. The rows correspond to a decomposition
of the net input [(from top) initial adaptation stimulus, washout
phase, readaptation stimulus, summed inputs]. Because a suf-
ficient number of washout trials was inserted between the initial
adaptation and readaptation stimuli to bring the state vector
close to its naive value of (in this case) 0, the apparent rates of
adaptation during the readaptation and initial adaptation phases
are not nearly as distinguishable as in CP (Fig. 1). However, the
directional error output (and thus savings) in response to the
summed perturbations can be predicted simply from the super-
position of the directional errors caused by the individual
perturbations (this superposition being the red curve in the
shaded plot), without additional concern for the values of the
slow and fast components of the state vector (blue and green
curves, respectively, in shaded plot). Perturbation function for
this WO paradigm: 0° for 1 � n � 10, 30° for 11 � n � 100,
0° for 101 � n � 200, 30° for 201 � n � 280.
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Rate constant savings would correspond to Src �0. This method is
reasonable to the extent that the early phase of adaptation can be well
approximated by first-order behavior, even though the best model for
the net data might be of higher order (Smith et al. 2006).

To assess the degree to which the various SSMs captured Src, Eq.
1 was also fit to the various SSM fits. That is, the SSM fits (see
State-space modeling) were simply treated as e[n] and fit by Eq. 1,
again, per subject and separately for the initial adaptation and read-
aptation phases. The basic logic is that if a given SSM fits the data
well, the fit of Eq. 1 to the fit of the SSM should capture Src well. We
note that our variance estimator for Src comes from the variation in
estimated Src across subjects (not the “residual” variation about each
fit) and, in such a case, statistical inference will be valid even when
“fitting to fits.”

State-space modeling

SSMs describe the entire e[n] movement series for a given exper-
iment, and (unlike Eq. 1) are not fit separately to the initial adaptation
and readaptation phases. The parameters of each type of SSM of
interest (described in the following text) were estimated separately in
each subject. Linear, discrete-time SSMs for modeling motor learning
data have been discussed by Cheng and Sabes (2006). The SSMs we
use correspond to their Eq. 3.9 and we use their notation (except that
we use lowercase boldface for vectors, uppercase boldface for matri-
ces, and italics for scalars). Perturbation (visuomotor rotation angle in
degrees) r[n] and the output (reach direction at peak velocity relative
to the target direction in degrees) y[n] were scalars (e[n] � r[n] �
y[n]). The state vector on movement n, x[n] (�{xslow[n] xfast[n]}T)
represents the components of the sensorimotor transformation, i.e., the
angular discrepancy between the target direction and movement
direction, on trial n. Therefore xslow and xfast are also in units of
degrees. The state update equation is

x�n � 1� � Ax�n� � b�r�n� � y�n� � bx� � ��n�

� Ax�n� � b�e�n� � bx)���n� (2)

where

A � � aslow 0
0 afast

�
is the matrix of dimensionless retention rates, b � [bslow bfast]

T is the
vector of dimensionless learning rates, bx is sensorimotor bias (de-
grees), and the state noise vector � 	 N(0, �state

2 I). The equation for
the reach direction on trial n � 1 is

y�n � 1� � cTx�n � 1� � ��n � 1� (3)

with the output noise � 	 N(0, �output
2 ), and c � [1 0]T for one-rate

models or [1 1]T for two-rate models. For one-rate models afast and
bfast were constrained to be zero. Equation 2 can easily be reparam-
eterized to have r be the input instead of e, and in figures we will use
perturbation as the input (because it is under direct experimental control).
Likewise, we will discuss the output in terms of both y and e.

The initial state was set equal to its steady-state value under zero
perturbation from �
, which is

x�1� � �
���afast � bfast � 1�bslowbx � bfastbslowbx�

�aslow � bslow � 1��aslow � bslow � 1� � bslowbfast

���aslow � bslow � 1�bfastbx � bfastbslowbx�

�aslow � bslow � 1��afast � bfast � 1� � bslowbfast

�
The variance of x[1] was �initial

2 I.
The SSM described by Eqs. 2 and 3 with fixed [aslow bslow afast bfast]

is LTI (and so referred to as SSMLTI). We also used a version of the
above-cited SSM in which [aslow bslow afast bfast] were allowed to

take on different values for the experimental phases of initial adap-
tation, counterperturbation for CP (or washout for WO), and readap-
tation. We refer to these SSMs as “varying-parameter” SSMs (abbre-
viated as SSMVP). SSMVP are non-LTI (or, more precisely, not
necessarily LTI) because they need not satisfy superposition. The idea
behind using SSMVP is that the experience of a perturbation during an
early experimental phase (e.g., initial adaptation) might change the
system parameters during a later phase (e.g., readaptation): Consider
a particular system initially (i.e., in the absence of prior nonzero input)
displaying LTI behavior. Let r1[n] be a perturbation function taking
on a particular nonzero value for 0 � n � N and a value of zero
everywhere else, and let the response of the system to r1[n] be y1[n].
Let r2[n] � r1[n � L] with L � N, and let the response of the system
to r2[n] be y2[n]. Let r3[n] � r1[n] � r2[n], and let the response of the
system to r3[n] be y3[n]. If the occurrence of the perturbation reflected
in r1[n] changes the parameters of the system, then y3[n] will not equal
y1[n] � y2[n]. This is because y2[n] � y1[n � N], whereas the
response to r2[n] having been preceded by r1[n] (i.e., to r2[n]
as a component of r3[n]) will not equal y1[n � N] as [aslow

bslow afast bfast] will have been changed as a consequence of r1[n].
Thus representing the system transform as T(r), we would have
T(r1[n] � r2[n]) � T(r3[n]) � y3[n] � y1[n] � y1[n � N] � y1[n] �
y2[n] � T(r1[n]) � T(r2[n]), and thus T(r) would be a non-LTI system.

The reason we use the abbreviation SSMVP for these varying-
parameter SSMs as opposed to simply SSMnon-LTI is that SSMVP is
one very particular type of non-LTI SSM among many. We chose
SSMVP from among the immense class of non-LTI models because
although it can manifest experience dependence, it is LTI within
phase, which is congruent with our impressions of directional error
data from previous visuomotor rotation paradigms (Krakauer et al.
2005).

We considered one- and two-rate versions of the SSMLTI and the
SSMVP. Numbers of free parameters (k) per SSM were as follows:
k � 6 for SSMLTI,1; k � 8 for SSMLTI,2; k � 10 for SSMVP,1; and k �
16 for SSMVP,2. An explicit form for the likelihood f(e � p) of the
directional error e � r � y � {r[Ninitial] � y[Ninitial], r[Ninitial � 1] �
y[Ninitial � 1], . . . , r[Nmax] � y[Nmax]}T) for each of the four SSMs
was derived from Eqs. 2 and 3. For SSMLTI, p � [aslowbslow afast bfast

bx �initial
2 �state

2 �output
2 ]T; p was similar for SSMVP except that the

values of [aslow bslow afast bfast] were allowed to be different during
the three phases of both CP and WO. Ninitial � 31 and Nmax � 160;
for CP, Ninitial � 31 and Nmax � 190 for WO (see next paragraph for
the reason that all 240 movements were not used). These values were
chosen to allow fitting from the last 10 zero perturbation trials before
the initial adaptation up until 30 trials into the readaptation. The form
of loge [ f(y � p)] corresponding to Eqs. 2 and 3 was derived such that,
unlike expectation-maximization (Cheng and Sabes 2006; Shumway
and Stoffer 1982), the states were not explicitly represented; thereby,
maximum likelihood estimates (MLEs; Shao 2003) p̂ of p were
obtained from e of each subject for each of the four SSMs by
minimizing �loge [ f(y � p)] with respect to p using the MATLAB
7.4a (The MathWorks, Natick MA) routine fmincon via the method of
Levenberg–Marquardt. Fits were also obtained to across-subject av-
erages of e, but these fits were used for display only, not for model
selection (see AIC). The following linear constraints were used to
reduce the occasion of nonconvergence: 0 � aslow, afast � 1.1; 0 �
bslow, bfast � 0.8; �30 � bx � 30; 1 � �initial

2 � 200; 0.1 � �state
2 �

200; 1 � �output
2 � 200; aslow � bslow � 0.001; afast � bfast � 0.001.

All fits were initialized with the values pinitial � [0.99 0.05 0.4 0.2 0
10 10 10]T.

In expectation-maximization, one iteratively maximizes (with re-
spect to p) the expectation of loge [ f(x, y � p)] (with respect to x
conditioned on y and p); for SSMLTI, this expectation has a compu-
tationally simple form (Cheng and Sabes 2006; Shumway and Stoffer
1982). However, we did not use the expectation-maximization method
of obtaining the MLE of p because we were not sure how to
implement this method with SSMVP. Instead, for both SSMLTI and
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SSMVP, we maximized the more complicated loge [ f(y � p)]; the
computational expense of determining loge [ f(y � p)] was the only
reason the entire 240 movement data sets were not used to obtain
MLEs.

Obtaining MLEs of e (both for plotting and for assessment of
explanation of savings) involved substituting the expression for y[n]
from Eq. 3 into Eq. 2, eliminating all random terms, and substituting
p̂ for p

x̂�n � 1� � Âx̂�n� � b̂�r�n� � cTx̂�n� � b̂x) (4)

ê�n � 1� � r�n � 1� � cTx̂�n � 1� (5)

This fit ê is purely a function of p̂ and the deterministic r, and so (by
virtue of the r we used in either paradigm) is not “bumpy”: ê
represents our best estimate of the expected value of e[n] given p̂ and
r. This can be contrasted with Kalman filtering (not used here), which
yields the best estimate of the expected value of e[n] given p̂, r, and
e[n � 1] (Shumway and Stoffer 1982), which would tend to be
“bumpy.” Although this latter type of fit better follows the data, it is
not limited to the estimated deterministic response of the system,
which is all that is of interest here.

AIC

Because the four different SSMs described earlier have different
numbers of free parameters (k), model parsimony becomes an issue.
This is because simply increasing k will improve apparent model fit
(i.e., increase loge [ f(y � p̂)]), even if the extra parameters are irrelevant
to the true process generating the data. Thus the SSM with more
parameters might conceivably appear to explain more savings than
another, but in a manner not “worth” the extra parameters because adding
extra parameters tends to reduce the stability of fits over repeated
measurements (Stone 1977). The AIC provides a way to rank a set of
candidate models in terms of how well they fit the data (Akaike 1974;
Bozdogan 1987; Burnham and Anderson 2002) while accounting for the
effect of varying k. The AIC for the ith candidate model is

AIC i � �2loge �fi�y � p̂i�� � 2ki (6)

and it is in units of information (Burnham and Anderson 2002). Let ui

equal the expectation (with respect to the data sample) of the Kull-
bach–Leibler mean information for discrimination between candidate
model i and the true data generating process; ui is the risk function
(i.e., the function to be minimized over i) for information-theoretic
model selection and is related to total prediction error (Akaike 1974;
Bozdogan 1987; Burnham and Anderson 2002). AICi � AICj is an
approximately unbiased estimator of ui � uj (Akaike 1974; Bozdogan
1987; Burnham and Anderson 2002). That is, the AIC difference be-
tween two candidate models is an approximately unbiased estimator of
their difference in information-theoretic model selection risk. However,
the AIC is known to demonstrate a bias with respect to model selection
risk toward selection of more overparameterized models (Hurvich and
Tsai 1991), which will temper our inferences accordingly.

Since the difference in AIC between two models is only an
estimator of their difference in risk, to control the false-positive rate
when comparing the risk between models using the AIC would
require a statistical test. Here, the null hypothesis of zero difference
between pairs of SSMs in the population average risk was assessed via
paired t-test using a two-tailed � � 0.05. Because AIC differences do
not have normal distributions, the use of t-test is not formally correct;
however, parametric tests tend to be robust to violations of normality
(Kirk 1982). Nevertheless, the Shapiro–Wilk W test (Shapiro and
Wilk 1968) was used to assess the assumption of normality on the
AIC differences for each of the six SSM pairings in both CP and WO
paradigms; a threshold of � � 0.05 for each W test was used as a
criterion for deciding whether the violation of the normality assump-
tion was acceptable.

We remark that although performing parametric statistical tests on
independent and identically distributed samples of AICs is not a very
common procedure, and was frowned on by Burnham and Anderson
(2002), we cannot see any fundamental problem or contradiction in
doing so. Indeed, we see it as a strength, given the likely variability
between subjects in the relative risk between models, variability that
is explicitly accounted for in statistical testing.

Using the AIC for model selection is different from statistical
hypothesis testing of additional SSM parameters (one possible alter-
native to the AIC for model selection), which controls type I error rate
(�) for a null hypothesis. Arguments against using hypothesis testing
to perform model selection include the arbitrary selection of �, the
multiple-comparison problem, the dependence of results on the order
of entering variables in stepwise regression, and the philosophical
issue of whether any null hypothesis can ever be true (Akaike 1974;
Bozdogan 1987; Burnham and Anderson 2002).

R E S U L T S

Adaptation curves

The directional errors for both CP and WO manifested the
essential qualitative behavior expected from previous studies
of adaptation to visuomotor rotation (Krakauer et al. 1999,
2000; Wigmore et al. 2002). CP directional error data averaged
across subjects (n � 6) is shown in Fig. 3A (data from a
randomly selected single subject is shown in Supplemental
Fig. S1A).1 With respect to the CP data averaged across
subjects, directional error on the first trial during the initial
adaptation phase was on average �33°, which is very close to
the value of the perturbation value (�30°) after taking into
account a small sensorimotor bias, which led to a �4° offset
during baseline trials. As expected, directional error decreased
throughout the course of initial adaptation, approaching an
asymptotic level of adaptation of approximately �6°. The first
trial of counterrotation (�30°) had a directional error of �54°,
as expected from the asymptotic level of directional error
during initial adaptation, which then increased to �23° on the
eighth movement with counterrotated feedback. The first trial
of readaptation had a directional error of �36° (i.e., within 3°
of the first trial of initial adaptation, which indicates that
aftereffects were to a good approximation eliminated). By
visual inspection, the apparent rate constant of readaptation
was substantially more negative (i.e., smaller decay time con-
stant) than that of initial adaptation.

Figure 3B shows the directional error data averaged across
subjects (n � 8) for WO (data from a randomly selected single
subject are shown in Supplemental Fig. S1B). This paradigm
yielded qualitatively very similar results to those of CP, ac-
counting for the larger magnitude of the perturbation (�45° for
WO vs. �30° for CP). Also, as expected, the directional error
during the first trial of washout was approximately �36°,
which is less than the magnitude of the 45° perturbation during
initial adaptation (whereas in contrast, in CP the directional
error during the first trial of counterrotation was �54°, which
is substantially larger in magnitude than the corresponding
value of the perturbation during initial adaptation). As in CP,
aftereffects were successfully eliminated. Also as in CP, visual
inspection suggests that the apparent rate constant of readap-
tation was substantially more negative than that of initial
adaptation.

1 The online version of this article contains supplemental data.
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A potential confound in comparing and contrasting rate
constant savings, Src, in the CP and WO paradigms was that
they were associated with different rotation (perturbation)
amplitudes during initial adaptation (�30° for CP and �45°
for WO; see Visuomotor rotation paradigms, in METHODS),
which could possibly be associated with different rate con-
stants of adaptation. To assess this possibility, we compared
the rate constants of initial adaptation between CP and WO. A
single exponential (Eq. 1) was fit to the first 30 movements of
the initial adaptation data from each subject in each paradigm
to obtain an estimate of the apparent adaptation rate constant.
The exponential rate constants (in units of movements�1)
during the initial adaptation phase were (mean � SD) �0.16 �
0.14 for CP and �0.17 � 0.16 for WO, which were not
significantly different [t(12) � �0.13, two-tailed P � 0.90].
This shows that, on average, rate constants of initial adaptation
were very similar between CP and WO (which is what would
be expected under a LTI system), despite the different magni-
tudes of visuomotor rotation. For completeness, we note that
this implies that their rates of initial adaptation (in units of
degrees �movements�1) were different (greater for WO).

Besides the requirement for the LTI system to have a single
rate constant regardless of perturbation amplitude, the output
amplitude must also be strictly proportional to perturbation

amplitude. This was supported as the average ratio of estimated
output amplitude (i.e., a in Eq. 1) to perturbation amplitude
was very similar [t(12) � 0.08, two-tailed P � 0.94] for CP
(0.922 � 0.011) and WO (0.916 � 0.029). This finding
provides further support for an LTI system being a reasonable
approximation to initial adaptation. It also implicitly provides
evidence against adaptation having appreciable saturation or
supralinear (two other types of nonlinear SSMs distinct from
SSMVP) characteristics in this perturbation range because this
ratio would have been different between CP and WO if it did.

Initial adaptation: one-rate or two-rate?

In the immediately preceding text, we approximated the first
30 trials of initial adaptation as a single exponential to estimate
apparent adaptation rate constants. However, this does not
mean that the adaptation curves do not have multirate behavior.
Therefore a preliminary question we sought to address is
whether initial adaptation to a visuomotor rotation is a better fit
by SSMLTI,1 or SSMLTI,2 (SSMVP values were not relevant
here because initial adaptation constitutes only one phase).
Data reported for adaptation to a viscous-curl force field
suggested a multirate (e.g., two-rate) system during initial
adaptation (Smith et al. 2006). Determining whether there are

FIG. 3. The perturbation r[n] (thick gray line), across-sub-
ject averaged directional error e[n] (open diamonds) and SSM
MLE fits (black line: SSMLTI,1, green line: SSMLTI,2, blue line:
SSMVP,1, red line: SSMVP,2) for the (A) CP and (B) WO
paradigms.
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similarly two rates present during initial adaptation to a visuo-
motor rotation will be important for interpreting how the
various SSM models fit CP and WO directional error data in
their entirety.

Initial adaptation data were fit better by a SSMLTI,1 than by a
SSMLTI,2, significantly in CP [for AIC1-rate LTI minus AIC2-rate LTI:
t(5) � �37.9, two-tailed P 
 0.001] and only as a trend for
WO [for AIC1-rate LTI minus AIC2-rate LTI: t(5) � �2.10,
two-tailed P � 0.07]. (The extremely high t-value for the
former comparison was mainly due to very small variability
across subjects in [AIC1-rate LTI minus AIC2-rate LTI] for initial
adaptation in CP; the average values of [AIC1-rate LTI minus
AIC2-rate LTI] for initial adaptation were �3.70 and �1.58 for
CP and WO, respectively.) These results show that, ostensibly
unlike adaptation to viscous-curl force fields (Smith et al.
2006), initial adaptation to either a �30° (in CP) or �45° (in
WO) visuomotor rotation is better fit by a SSMLTI,1 than a
SSMLTI,2. As a technical aside, we emphasize that these SSM
fits were to the initial adaptation phase only, in contrast to the
SSMVP fits to all three phases we report later (see SSM fits)
that, despite allowing for different learning and retention rates
in each of the three paradigm phases, have a single sensori-
motor bias parameter.

Savings

The presence of Src in both CP and WO paradigms was
confirmed by comparing the apparent rate constants from the
initial adaptation and readaptation phases. This method of
measuring savings did not explicitly involve assuming any
SSM but simply relied on the qualitative impression that at
least the first few trials of motor adaptation to a constant
perturbation is reasonably well modeled by Eq. 1 (Caithness
et al. 2004; Krakauer et al. 2005; Mazzoni and Krakauer 2006),

although this would correspond to the response of SSMLTI,1 to
a constant perturbation. The rate constant c was significantly
more negative (corresponding to faster learning, i.e., Src) for
the readaptation than for the initial adaptation phase in both CP
[t(5) � 3.05, one-tailed P � 0.014] and WO [t(7) � 3.73,
one-tailed P � 0.004]. Furthermore, the magnitude of Src was
not significantly different between CP and WO [cinitial adaptation
minus creadaptation (mean � SD) � 0.48 � 0.39 for CP and
0.47 � 0.36 for WO; t(12) � �0.056, two-tailed P � 0.96].
Also, we keep in mind the finding that apparent rate constants
of initial adaptation were very similar between CP and WO
(see Adaptation curves). Thus the two adaptation paradigms
CP and WO did not appreciably differ from one another either
in terms of Src (which was robust in both) or rate constants of
initial adaptation (despite different perturbation magnitudes).

SSM fits

MLE fits of the four SSMs to e[n] (simultaneously to all
three phases of either the CP or WO paradigms; see State-space
modeling in METHODS) were computed separately in each sub-
ject. The across-subject averages of the parameter estimates are
provided in Table 1. To collectively illustrate the character of
the fits, MLEs of the SSMs were also determined for the
across-subject averaged time courses for both CP (Fig. 3A) and
WO (Fig. 3B). Although quantitative comparisons between
SSMs based on the fits obtained per subject are provided
subsequently, a qualitative impression of the across-subject
averaged fits is provided here: SSMLTI,1 did a poor job of
explaining savings in both paradigms, yielding initial adapta-
tion that was too fast and readaptation that was too slow; this
SSM also poorly fit the sensorimotor bias. SSMLTI,2 did a
reasonable job in CP but did a very poor job in the WO
paradigm in which it manifested the same problem as

TABLE 1. Across-subject averages of the maximum likelihood estimates of SSM parameters

CP WO

SSMLTI,1 SSMLTI,2 SSMVP,1 SSMVP,2 SSMLTI,1 SSMLTI,2 SSMVP,1 SSMVP,2

Phase 1
aslow 0.924 (0.043) 0.991 (0.012) 0.971 (0.028) 0.986 (0.016) 0.960 (0.031) 0.983 (0.025) 0.979 (0.016) 0.986 (0.016)
bslow 0.137 (0.057) 0.062 (0.016) 0.081 (0.039) 0.112 (0.057) 0.245 (0.099) 0.159 (0.046) 0.149 (0.078) 0.116 (0.048)
afast N/A 0.629 (0.102) N/A 0.369 (0.350) N/A 0.519 (0.318) N/A 0.492 (0.324)
bfast N/A 0.158 (0.051) N/A 0.003 (0.005) N/A 0.193 (0.104) N/A 0.077 (0.076)

Phase 2
aslow N/A N/A 0.779 (0.150) 0.946 (0.140) N/A N/A 0.846 (0.102) 0.891 (0.099)
bslow N/A N/A 0.093 (0.089) 0.064 (0.058) N/A N/A 0.242 (0.141) 0.144 (0.127)
afast N/A N/A N/A 0.573 (0.263) N/A N/A N/A 0.480 (0.284)
bfast N/A N/A N/A 0.120 (0.079) N/A N/A N/A 0.230 (0.181)

Phase 3
aslow N/A N/A 0.834 (0.077) 0.792 (0.388) N/A N/A 0.955 (0.038) 0.975 (0.034)
bslow N/A N/A 0.318 (0.187) 0.170 (0.123) N/A N/A 0.375 (0.137) 0.330 (0.170)
afast N/A N/A N/A 0.400 (0.347) N/A N/A N/A 0.548 (0.365)
bfast N/A N/A N/A 0.175 (0.256) N/A N/A N/A 0.088 (0.114)

Sensorimotor bias
bx 2.707 (5.330) �3.405 (2.233) 3.189 (43.382) �4.101 (1.758) �3.065 (10.986) �4.071 (8.599) 2.562 (28.544) �3.098 (13.398)

Hyperparameters
�initial

2 36.107 (34.135) 1* (0.00) 48.071 (43.382) 1* (0.00) 1* (0.00) 1* (0.00) 12.209 (28.544) 5.737 (13.398)
�output

2 13.358 (4.537) 12.791 (3.604) 17.417 (4.702) 14.925 (5.970) 13.680 (10.986) 7.482 (8.599) 17.699 (12.473) 16.469 (12.408)
�state

2 6.378 (3.550) 2.530 (1.643) 1.255 (2.270) 1.167 (2.479) 9.911 (5.504) 8.195 (7.624) 3.539 (2.953) 2.123 (1.644)

Values are means, with SDs in parentheses. Due to our parameterization of the SSMs, the initial state and state noise variance estimates for two-rate models
need to be multiplied by 2 to be comparable to the corresponding variance estimates for one-rate models. That the average and SD of phase 1 aslow are the same
in CP and WO to three decimal places for SSMVP,2 is not a typographical error. An asterisk denotes that all subjects in that sample had estimates equal to a bound
placed in that parameter. N/A, parameter not applicable for that SSM.
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SSMLTI,1: initial adaptation that was too fast and readaptation
that was too slow. Although the SSMVP,1 did a reasonable job
fitting WO, it did a much less reasonable one in CP in which it
clearly misfit the baseline offset. We speculate this misfitting
of the baseline offset was due to a competition between the
sensorimotor bias term, on the one hand, and the learning and
retention rates during initial adaptation, on the other, both of
which determine the offset from zero directional error in
baseline trials. Similar misfitting of the baseline offset by this
SSM was also apparent in five of six of the individual subject
fits (data not shown). SSMVP,2 fit the data well overall in both
paradigms.

Table 2 shows the percentage of Src explained by the various
SSMs in both paradigms. The SSMLTI,1 was unable to explain
Src in either paradigm. The SSMLTI,2 was able to explain a
nontrivial amount Src in CP but, as expected, negligibly ex-
plained Src in WO. Both of the SSMVP explained substantial
amounts of Src in both CP and WO, although the SSMVP,1
overestimated Src in CP.

It is important to consider the number of SSM parameters in
addition to how well an SSM seems to fit the data overall.
Model selection risk corresponds to net prediction error, which
includes both systematic and random sources of misfitting
(Akaike 1974). All other things being equal, increasing the
number of parameters increases model selection risk. The AIC
is an approximately unbiased estimator of model selection risk
in that the AIC not only penalizes systematic misfitting by the
model [through a dependence on loge (likelihood)] but also
corrects in a theoretically reasoned way (Akaike 1974) for the
number of model parameters. The across-subject average AICs
(not the AICs corresponding to fits to the across-subject aver-
age data) of the various candidate SSMs to CP (trials 31–160)
and WO (trials 31–190) are shown in Fig. 4, A and B, respec-
tively. Plotted together with the AICs are the �2 loge (likeli-
hood) values (like AIC, the smaller the better). The �2 loge
(likelihood) values (which do not penalize the number of
parameters) decrease necessarily as the number of nested SSM
model parameters k increases (Burnham and Anderson 2002).
In contrast, the AIC, which equals �2 loge (likelihood) � 2k,
does not have to decrease as k increases (e.g., Fig. 4B).

For descriptive purposes, for each SSM pairing the propor-
tion of subjects with AIC differences in a given direction are
provided in Tables 3 and 4 for CP and WO, respectively. To
compare the population average model selection risk between
SSMs, paired t-tests on the AIC values from different SSM
pairings were performed (two-tailed � � 0.05). The Shapiro–
Wilk W test was used to assess the t-test assumption of
normality on the AIC differences for each of the six SSM
pairings in both CP and WO paradigms; none of the W values
for any of the pairings in either paradigm was significant at
� � 0.05 (12 W tests: median P value � 0.49, P value range �
0.09–0.93), indicating insufficient evidence to reject the null
hypothesis of normality for any of the pairings. We therefore

proceeded with the use of t-test. The AIC of the SSMLTI,2 was
significantly better than that of the SSMLTI,1 in both CP [t(5) �
4.24, two-tailed P � 0.008] and WO [t(7) � 2.58, two-tailed
P � 0.036]. The AIC of the SSMVP,2 was better (although not
significantly so at two-tailed � � 0.05) than the SSMLTI,2 in
both the CP [t(5) � 1.76, two-tailed P � 0.138] and WO
[t(7) � 1.44, two-tailed P � 0.192]. That the AIC was better
(albeit not significantly) for SSMVP,2 than for SSMLTI,2 in CP,
is a pivotal finding. This is because if the SSMLTI,2 was a good
approximation to the true data generating process in CP, its model
selection risk in CP would be better than that of SSMVP,2 (because
SSMVP,2 has more parameters than SSMLTI,2). However, we keep
in mind the bias of AIC toward overfitting with respect to model
selection risk (Hurvich and Tsai 1991).

The AICs of SSMVP,1 and SSMVP,2 were not substantially differ-
ent in CP [AIC1-rate varying-parameter minus AIC2-rate varying-parameter:
t(5) � 0.34, two-tailed P � 0.749], although the former trended
toward being favored over the latter in WO [AIC1-rate varying-parameter
minus AIC2-rate varying-parameter: t(7) � �2.29, two-tailed P �
0.056]. Because these results did not indicate that SSMVP,2 was
providing a consistently (i.e., in both CP and WO) better fit
than SSMVP,1, we were curious to see how multirate behavior
was manifested, if at all, in any phase of either paradigm. To
this end, we plotted the fast and slow state (Eq. 2) estimates
from SSMVP,2 fit to the across-subject averaged e[n], for both
CP and WO. For CP, it appears that the fast state is substantial
only during the counterperturbation phase (Fig. 5). Analo-
gously, for WO the fast state is most apparent during the
washout phase. This absence of a salient fast system during
initial adaptation is expected based on our finding that the
initial adaptation phase is best fit by a SSMLTI,1 (see Initial
adaptation: one-rate or two-rate?). Figure 5 furthermore sug-
gests essentially one-rate behavior for both CP and WO during
readaptation, which indicates that Src relies almost entirely on
a change in the parameters of the dominant, slow state. It may
be that for adaptation to visuomotor rotation, fast states emerge
substantially only when the net state is returning to 0°, as
occurs during counterperturbation and washout.

D I S C U S S I O N

To provide a more pure assessment of savings than that of
most previous studies we eliminated aftereffects via either CP
or WO, and we also used Src rather than rate savings. Compa-
rable Src was observed for CP and WO. SSMLTI,2 was able to
explain on average 65% of Src in CP but only 1.5% of Src in
WO. In terms of SSMLTI,2, this is because the fast and slow
states, when subjected to enough washout trials, will both
(aside from any sensorimotor bias) get arbitrarily close in
expectation to zero (and this is true of any arbitrary order of
LTI model, not just second-order). Since SSMLTI parameters
are fixed, the bringing of its state variables close to initial
conditions will make its net output response during a second

TABLE 2. Percentage of savings explained by state-space model

SSMLTI,1 SSMLTI,2 SSMVP,1 SSMVP,2

CP 3.6 � 10�5 � 2.9 � 10�4 (8.5 � 10�5) 64.8 � 57.0 (46.8) 156.6 � 81.3 (152.2) 109.3 � 81.3 (113.2)
WO �9.1 � 10�5 � 3.2 � 10�4 (0.0) 1.5 � 2.1 (0.18) 87.5 � 29.1 (87.8) 86.1 � 22.8 (82.6)

Values are means � SD; median values are in parentheses.
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rotational perturbation look much like that during initial adap-
tation, and increasingly so with increasing numbers of washout
trials. Given the empirical rate of initial adaptation, the 40
washout trials used in WO were sufficient to well approximate
complete washout, making it impossible for a SSMLTI to
explain Src in WO. In contrast, both SSMVP,1 and SSMVP,2
(which can be non-LTI in the perturbation inputs) explained
�85% of Src in both CP and WO. Furthermore, as measured by
the AIC both SSMVP,1 and SSMVP,2 fit the overall adaptation
movement series data better than either SSMLTI in both CP and
WO (although population-level inference was not significant).
Together, these empirical findings lead to the following con-
clusions for adaptation to visuomotor rotation: 1) Src can occur
even with complete elimination of aftereffects via washout
between initial adaptation and readaptation, confirming a pre-
vious report (Krakauer et al. 2005); 2) this savings cannot be
reasonably explained by a SSMLTI,2 (and from theory, not by
any SSMLTI); and 3) Src seen with counterperturbation as well
as Src seen with washout are both more parsimoniously ex-
plained as the consequence of experience-dependent changes
in learning and retention parameters (as a result of initial
adaptation) rather than as a property of a multirate LTI system.

Src observed here in WO for single target adaptation is
consistent with the savings described in a our previous work
for multitarget rotation adaptation (Krakauer et al. 2005).
Hinder and colleagues reported absence of savings in a WO
paradigm (Hinder et al. 2007) but savings was determined from
the fits of a power function to directional error (e[n] � c1n2

c),
which is a poor approximation because empirical adaptation
curves tend not to asymptote at zero, whereas power functions
must (a nonzero asymptote can be accommodated by, say, a
SSMLTI,1 by having a retention rate 
1 and/or a sensorimotor
bias). Perhaps this is why no savings was detected for WO even
though visual inspection of their raw adaptation data (Fig. 2b
from that report) suggests otherwise. Thus at the present time
it would seem that savings can indeed occur even after washout
eliminates aftereffects. This does not preclude the possibility
that prolonged washout might eliminate savings, which is
another potential explanation for the lack of savings reported
by Hinder and colleagues (2007) and in the study by Kojima

and colleagues (2004), where savings was not seen after
counterperturbation followed by washout trials.

Recently, in a perturbation/counterperturbation/error-clamp
adaptation paradigm using viscous-curl force fields, it was
demonstrated that SSMLTI,2 could explain spontaneous recov-
ery, a transient excursion of motor output during movements
under error clamp in the same direction as that seen during
adaptation to the initial perturbation (Smith et al. 2006). The
early component of spontaneous recovery in SSMLTI,2 is at-
tributable to the rapid decay of the fast state, whereas the
sluggish decay back to baseline is attributable to the slow
decay (i.e., better retention) of the slow system. Spontaneous
recovery has also been observed with saccades (Kojima et al.
2004). Smith and colleagues also showed via simulation that
SSMLTI,2 produces Src for CP. A heuristic explanation of
savings for the SSMLTI,2 in CP (with the convention that the
initial perturbation is positive) is that the movements with
counterrotated feedback eventually (when the net state
reaches zero) bring the fast state to take on a substantial
negative value (with the slow state having a value that is
equal in magnitude but positive). That the fast system has a
value substantially away from zero on the first readaptation
trial (unlike the first initial adaptation trial) in conjunction
with the fact that the fast system retention parameter is
smaller than that of the slow system, allow the fast system
to respond with a more rapid correction to the perturbation
during readaptation than to the perturbation during initial
adaptation (Smith et al. 2006). However, perhaps a more
clear way to understand the Src produced by SSMLTI,2 in CP
is that it is simply the result of the superposition of the
separate adaptation responses to the initial adaptation, coun-
terperturbation, and readaptation perturbations (critically
with the latter necessarily being identical to that for initial
adaptation). Thinking in terms of superposition, we can also
understand why SSMLTI,2 cannot produce savings in WO
without worrying explicitly about the slow and fast systems:
the net output seen during readaptation will be a superpo-
sition of the separate adaptation responses to the initial
adaptation, washout, and readaptation perturbations; the
system response to the initial adaptation, however, has

TABLE 3. Number of subjects showing AIC differences
in a particular direction in CP

SSMLTI,1 SSMLTI,2 SSMVP,1 SSMVP,2

SSMLTI,1 N/A 6/6 6/6 5/6
SSMLTI,2 — N/A 4/6 5/6
SSMVP,1 — — N/A 3/6
SSMVP,2 — — — N/A

The value of each cell is the proportion of subjects whose AIC is lower (i.e.,
better) for the SSM of the column relative to the SSM of that row.

TABLE 4. Number of subjects showing AIC differences
in a particular direction in WO

SSMLTI,1 SSMLTI,2 SSMVP,1 SSMVP,2

SSMLTI,1 N/A 7/8 6/8 6/8
SSMLTI,2 — N/A 6/8 6/8
SSMVP,1 — — N/A 2/8
SSMVP,2 — — — N/A

The value of each cell is the proportion of subjects whose AIC is lower (i.e.,
better) for the SSM of the column relative to the SSM of that row.

FIG. 4. The across-subject averaged Akaike Information
Criterion (AIC, black) and �2 loge (likelihood) (gray) values
(to within an additive constant) of the candidate models for the
(A) CP and (B) WO paradigms. Both measures assess model fit,
but only the AIC penalizes for the number of parameters. For
each measure, it is only the differences between models (within
paradigm) that are meaningful. The units of both the AIC and
�2 loge (likelihood) are information, in the information-theo-
retic sense.
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decayed essentially to nil during the washout phase (and
will continue to decay), the response to the washout trials
themselves is nil, and the response attributable to the read-
aptation stimulus must simply be a shifted version of the
response to the initial adaptation stimulus.

Given that SSMLTI,2 is able to explain spontaneous recovery
in a viscous-curl force field (Smith et al. 2006), we need to ask
why SSMLTI,2 did not do a better job of explaining savings in
CP compared with SSMVP,2. A sufficient answer lies in our
finding that for the initial adaptation phase, the fit of SSMLTI,1
was superior to that of a SSMLTI,2 in both CP and WO, which
means that there was no appreciable two-rate behavior during
initial adaptation in our data. Thus SSMLTI,2 could not satis-
factorily explain savings even in CP because (under SSMLTI,2)
two-rate behavior is not something that can suddenly emerge at
readaptation. Rather, it must be evident even at initial adapta-
tion. In contrast to the lack of two-rate behavior during initial
adaptation in our visuomotor rotation data, the viscous-curl
force-field data reported by Smith and colleagues (Fig. 3d from
that report) manifest clear two-rate behavior during initial
adaptation (Smith et al. 2006). A possible explanation for this

discrepancy is the difference in the nature of perturbations used
in the two experiments. Viscous-curl force-field perturbations
have a proprioceptive component, whereas visuomotor rota-
tions do not. Malfait and Ostry (2004) showed that salient
viscous-curl force-field perturbations led to interlimb transfer
of adaptation in extrinsic coordinates, whereas more gradual
perturbations led only to intralimb transfer in joint-centered
coordinates. They suggested that the salient perturbation en-
gaged a cognitive/explicit mechanism distinct from the implicit
mechanisms thought to underlie adaptation in joint-centered
coordinates. Similarly, it has recently been shown that there is
a form of response to sudden force-field perturbations that
appears to be categorical rather than scaled to the size of the
error (Fine and Thoroughman 2006). In contrast, we have
shown that explicit strategies do not contribute to rotation
learning (Mazzoni and Krakauer 2006). Perhaps then the two-
rate behavior evident in force-field adaptation is due to an
explicit component absent in rotation learning. Therefore at the
current time we must restrict our finding that SSMLTI,2 is worse
at explaining savings in CP than SSMVP,2 to visuomotor
rotation.

FIG. 5. The fast (red line), slow (green line), and net �
fast � slow (black line) state variables estimated from the fit of
SSMVP,2 to the across-subject averaged directional error e[n]
are plotted for the (A) CP and (B) WO paradigms. The pertur-
bation r[n] (thick gray line), i.e., the deterministic input to the
system, is also plotted.
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The AIC was used here to assess parsimony of the candidate
SSMs in the contexts of the CP and WO paradigms. The AIC
does not measure the ability of the models to explain savings
per se (which is why we also directly assessed savings). Rather,
the AIC estimates the overall closeness, in terms of Kullbach–
Leibler mean information for discrimination, of the estimated,
candidate model to the true but unknown data-generating
process (Akaike 1974; Burnham and Anderson 2002); this
closeness does not solely depend on the ability to explain
savings. All other things being equal, however, a model that
explains more savings than another should be closer in terms of
Kullbach–Leibler information to the truth and therefore have a
lower AIC. As it turned out, direct measurements of the
amount of savings explained by the various SSMs were grossly
consonant with the AICs, with the SSMVP explaining more
savings as well as having better AICs (albeit, not significantly)
than those of the SSMLTI. The use of the AIC complemented
the direct measurement of savings because the former takes
into account increasing instability in the estimated fit associ-
ated with increasing parameter number, whereas the latter does
not. Thus that the SSMVP did not have significantly worse
model selection risk (and even trended toward being better)
than the SSMLTI suggests that the SSMVP made up for their
larger number of parameters by the extent to which they
reduced model bias (i.e., fit systematic aspects of the data). In
contrast, if we had included a highly overparameterized can-
didate model, it might have explained savings the best of all,
but its AIC would likely have been the worst of all. However,
a caveat of model selection with AIC is that it is known to be
biased toward selecting overparameterized models when the
ratio of the number of observations to the number of parame-
ters is low (Hurvich and Tsai 1991); we do not know the size
of this bias for the problem we investigated here.

The appeal of SSMLTI,2 in the context of motor adaptation is
that with a small number of static parameters it is nonetheless
capable of producing a fairly rich array of behavioral phenom-
ena (Smith et al. 2006). That savings in WO cannot be ex-
plained by such a model is in a sense unfortunate. However, a
more subtle yet perhaps more interesting aspect of the current
findings is that they underscore the fact that the ability of a
model to theoretically produce a certain phenomenon (in this
case, Src in CP) does not imply that the model can actually
explain the empirical phenomenon. The paradox is resolved by
realizing that it is not just the choice of model type, but also the
values of the model parameters that determine the input–
output behavior of a system. So, although SSMLTI,2 can pro-
duce Src in CP, it does so appreciably only when its parameter
values are such that two-rate behavior is sufficiently salient. It
so happened that, empirically, two-rate behavior during initial
adaptation was weak, which made the SSMLTI,2 fit to the Src
effects in CP mediocre. The situation in WO was different
because there it can be understood from superposition that it is
impossible for SSMLTI,2 to substantially explain Src.

Kording and colleagues (2007) described an elegant model
of sensorimotor adaptation based on Bayesian estimation
(“Bayesian learner”). In this model, the brain implements
Kalman filtering to obtain a posteriori estimates of sensorimo-
tor perturbation states (“disturbance states” in Kording et al.)
associated with different timescales, which it then uses to
correct sensorimotor maps (i.e., adapt). This Bayesian learner
model can be roughly understood as a generalization of the

SSMLTI,2 of Smith and colleagues (2006) that represents per-
turbations over a wide range of timescales instead of only two.
As the Kalman gain approaches steady state, Kalman filtering
approaches an SSMLTI. Thus a Bayesian learner that assumes
fixed, known state and measurement error covariance matrices
will be LTI, and thus obey superposition, at steady state.
Therefore like SSMLTI,2, such a Bayesian learner would fail to
explain the savings we observed in WO.

In contrast to SSMLTI (Kording et al. 2007; Smith et al.
2006), the SSMVP values investigated here were allowed to
change their parameters in an experience-dependent manner
and in this way were able to generate the non-LTI behavior
required to explain Src in WO. Said in another way, this
experience dependence of SSMVP parameters enabled meta-
learning (i.e., learning to learn; Abraham and Bear 1996).
Similarly, the Bayesian learner could also manifest metalearn-
ing by allowing its assumed state and/or measurement error
covariance matrices to vary (Kording et al. 2007); such a Bayesian
learner would also be SSMVP. It would be interesting to determine
whether such a varying-parameter Bayesian learner—which esti-
mates rather than assumes state and measurement noise param-
eters—can explain the savings we observed in WO more
parsimoniously than the SSMVP investigated here.
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