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Human sensorimotor learning: adaptation, skill, and beyond
John W Krakauer1,2 and Pietro Mazzoni2

Recent studies of upper limb movements have provided

insights into the computations, mechanisms, and taxonomy of

human sensorimotor learning. Motor tasks differ with respect to

how they weight different learning processes. These include

adaptation, an internal-model based process that reduces

sensory-prediction errors in order to return performance to pre-

perturbation levels, use-dependent plasticity, and operant

reinforcement. Visuomotor rotation and force-field tasks

impose systematic errors and thereby emphasize adaptation.

In skill learning tasks, which for the most part do not involve a

perturbation, improved performance is manifest as reduced

motor variability and probably depends less on adaptation and

more on success-based exploration. Explicit awareness and

declarative memory contribute, to varying degrees, to motor

learning. The modularity of motor learning processes maps, at

least to some extent, onto distinct brain structures.
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Introduction
Sensorimotor learning refers to improvement, through
practice, in the performance of sensory-guided motor
behavior. Here we will focus primarily on learning studies
of the hand and arm in humans. Based on our own
scientific leanings and limited space for this review, we
chose to neglect learning with eyes and legs. It is worth-
while to admit to this effector chauvinism as it raises a
question that almost never gets explicitly mentioned in
the field of motor learning: how to choose which animal,
body part, or task to study? Reductionism applies in motor
control as much as in as the rest of science; we need
reduced systems in order to build up from the simple to
the complex. Sherrington’s studies of reflexes across
single joints in cats and dogs were predicated on just this
kind of reasoning [1]. Thus the sheer richness and variety

of learned real-world motor behaviors has been reduced to
a small repertoire of laboratory-based learning tasks using
different body parts. The crucial question is how inter-
changeable are these tasks with respect to general
insights? It is fairly typical to read a paper where the
methods section is task-specific but the discussion
assumes the results are about motor learning in general.
Thus we would argue that there is a tendency in the field
to prematurely lump, and that we should be splitting
instead. We focus on goal-directed arm movements
because, in our view, they represent an intermediate
level of behavior that embodies both low-level motor
execution and higher-level cognition.

Psychophysical studies, in which learning is recorded
through quantitative movement analysis, reveal regular-
ities and performance patterns at the behavioral level,
which suggest organizational principles for learning.
Computational modeling offers normative principles,
such as optimal Bayesian estimation and minimization
of costs, to explain and predict behavioral data. Lesions in
patients and stimulation techniques, such as transcranial
magnetic (TMS) and direct current stimulation (tDCS),
can be used to test the causal role of anatomical struc-
tures.

This review, necessarily selective, will describe recent
noteworthy studies of goal-directed arm movements, and
is organized around the principles of modularity and
hierarchy. The text is structured on the premise that
motor learning (as a blanket term) consists of multiple
component processes, each of which has been studied
with particular experimental paradigms. We have divided
the sections into what we view as roughly separable
components of learning. The order of the sections pro-
ceeds from adaptation, to skills, and then to the role of
explicit cognitive processes.

Adaptation
Learning rates
Error-based paradigms (prisms, rotations, force fields)
have been used extensively to investigate motor learning
[2!]. In these paradigms, subjects experience a pertur-
bation of their hand during reaching or pointing
movements: lateral displacement by prisms, rotation of
movement direction, or lateral forces applied by a robot
arm. Specifically, these paradigms have focused on adap-
tation, a form of learning characterized by gradual im-
provement in performance in response to altered
conditions. Recent studies of motor adaptation have
shown this type of learning to consist of incremental
reduction in sensory prediction errors caused by a per-
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turbation in the world through trial-by-trial modification
of a motor-to-sensory mapping (forward model) [3]. The
update in the forward model is then somehow translated
into an update of motor commands [2!].

Adaptation is well captured by linear time-invariant
(LTI) (multi-) state-space models, which have sensory
errors or perturbations as inputs, sensorimotor mappings
as hidden variables, and the learned or adapted
response as the output. These models have identifiable
learning and retention parameters [4], whose origin has
been of great interest: are they fixed by evolution or can
some or all of them vary in some non-arbitrary  way
within the lifetime of a single individual? One norma-
tive Bayesian hypothesis is that these parameters can
indeed change and do so optimally based on our ability
to alter our estimates of both the stochastic behavior  of
the world and the noise in our sensory observations
[5,6]. Given this hypothesis, the optimization algorithm
that has been most investigated is the Kalman filter [7].
This filter can be understood  heuristically as computing
a learning rate (Kalman gain) at each trial that depends
on the variance of the prior estimate of the world
relative to the variance of sensory observations of the
world. The Kalman filter becomes an LTI-state space
model when the Kalman gain converges. Thus in inter-
preting adaptation data, one can either be agnostic
about the values of parameter estimates from fits to
adaptation data and go on to make predictions with
these parameters, or one can ask whether adaptation is
optimal in a Bayesian sense. Recent studies  have taken
both approaches.

Smith et al. originally introduced a two-rate state-space
model description of force-field adaptation, which posits
that adaptation is driven by a fast error reduction process
with poor retention and a slow process with good reten-
tion [4]. They have recently studied important ramifica-
tions of this model. In one study [8!] these authors
investigated anterograde interference – the ability of a
previously learned force field (Task A) to reduce the rate
of subsequent learning of an opposite force field (Task B).
Empirically, the amount of anterograde interference
observed in the learning of Task B increased with the
duration of Task A but then reached asymptote. The
authors show that the 2-state model, using parameter
values obtained from previous data, accurately predicted
the observed anterograde interference effects. Critically,
the degree of anterograde interference was not deter-
mined only by the final level of initial adaptation to A, but
also by the duration of practice in Task A. This result is
predicted if net adaptation is weighted more towards the
slow system as adaptation proceeds. These results join
previous successful predictions by the two-state model of
savings, spontaneous recovery, and long-term retention
[4,9]. The deep implication of being able to almost fully
capture the results of initial force-field adaptation and

subsequent phenomena with a simple fixed parameter 2-
state state-space model is that these experiments and the
model successfully isolate a distinct learning mechanism.
This kind of learning may be what the cerebellum is
specialized to implement (see Box 1).
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Box 1 Where does sensorimotor learning take place? Evidence
from neurologic patients and brain stimulation

Adaptation and the cerebellum: Recent studies add to the growing
evidence for a crucial role for the cerebellum in adaptation [47–50].
Mazzoni and Krakauer [3] showed that, in adaptation to visuomotor
rotation, implicit adaptation to a prediction error overrides an
alternative explicit cognitive strategy to reduce target error. Taylor
and Ivry [51!] recently used the same task design to test a
complementary prediction: if the cerebellum computes prediction
error, cerebellar patients should be able to implement the cognitive
strategy without interference from adaptation, which is what they
found. Rabe et al. [52] found a double dissociation between two
cerebellar regions and their contribution to different types of
adaptation. Atrophy of the intermediate and lateral anterior lobe
correlated with impairment of adaptation to a laterally displacing
force field, while atrophy of the intermediate zone of the posterior
lobe correlated with impairment of adaptation to a visuomotor
rotation. Finally, a brain stimulation study [53!!] recently confirmed
the cerebellum’s importance in adaptation, not by causing a
reversible lesion, but through enhancement of function. The authors
reasoned that, if the cerebellum adjusts forward models in
incremental steps on a trial-by-trial basis, enhancement of cerebellar
activity via transcranial direct current stimulation (tDCS) might result
in faster adaptation. This is precisely what they found, reinforcing the
crucial role of the cerebellum in adaptation and suggesting that the
rate of adaptation can be manipulated directly rather than through
changing uncertainties.

Skill and the motor cortex: What is the structural anatomical basis
for a high level of motor skill? One approach has been to use
transcranial magnetic stimuation (TMS) to probe the variety of finger
postures elicited by stimulation at various scalp positions over the
motor cortex. Gentner and Classen [54] initially demonstrated that
TMS elicits a range of finger postures that can be summarized by a
small number of mathematical building blocks (principal compo-
nents), and that these building blocks can be used to accurately
reconstruct finger postures assumed by the hand during normal
grasping movements. These findings suggested that finger postures
are embedded in a modular fashion in the circuitry of the motor
cortex. In a subsequent study [55!!], the authors then compared this
cortical organization between musicians and non-musicians. The
hypothesis was that the motor cortex of musicians may have
elicitable representations specialized for playing their particular
instrument. Musicians’ and non-musicians’ finger postures were
recorded while they played a musical instrument. While the
musicians’ principal components, obtained from stimulation, could
be used to accurately reconstruct these skilled movements, those of
non-musicians could not. In other words, the musicians’ ability to
play the instrument was reflected in an instrument-specific specia-
lized motor cortical organization that was not present in non-
musicians. That motor cortex maintains representations of motor
skills was brought one step further in a study [29!] that used tDCS
over the motor cortex of healthy subjects while they practiced a
difficult visuomotor task. Task performance was limited by a speed-
accuracy trade-off function (SAF), and motor skill learning was
measured as daily improvements in the SAF. Motor cortex stimula-
tion enhanced skill learning through an effect on overnight retention,
consistent with the idea that motor cortex can store task-specific
representations of motor skill.
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The 2-state, and other LTI models, cannot, however,
explain all the phenomena observed in adaptation exper-
iments [10–12], such as savings (faster relearning on a
second exposure to a perturbation). This limitation could
in principle be addressed by introducing nonlinearities in
the internal-model framework. Alternatively, additional
learning processes besides adaptation may be at work in
what appear to be relatively pure adaptation experiments
[13!], processes that are not captured by the internal-
model framework.

Wei and Kording [14!] investigated whether learning rate
data can be explained within the framework of Bayesian
estimation. For a Kalman filter, the learning rate should
decrease as sensory noise increases and increase after a
period when there is no sensory information. This is what
the authors found: in a reaching task with adaptation to a
visuomotor rotation, there was a reduction in learning rates
when the position of a computer screen cursor, indicating
hand position, was artificially blurred. The learning rate
increased when it was preceded by a block of trials with no
visual feedback. A note of caution needs to be raised,
however, about this experiment and others that have made
similar claims [15]. First of all, it is never stated what the
implication is for optimality arguments if some of, but not
all, the required parameters are adjusted in a direction
consistent with a Kalman filter mechanism. For example,
Burge et al. [15] also found a reduction in learning rate with
increased sensory noise but not for increased output noise,
and no increase when they increased variability in the
motor-to-sensory mapping. To remain within the Bayesian
framework it could be conjectured that some parameters
are fixed (hard-wired) or that changes in, for example, state
noise cannot be detected in the short time frame of a single
experiment. More damaging, however, are examples
where changes in rate occur when they are not predicted
by a Kalman filter; for example, increases in learning rate
after a period of baseline trials with normal feedback
(washout) [10,11]. Such results suggest that there are
alternative and likely more potent influences on adaptation
rates than uncertainty.

Representation of adapted mappings
Several recent studies have probed the constraints on
adaptation to test hypotheses about neural representa-
tions of new sensorimotor mappings.

Sing et al. [16!!] measured the lateral forces that subjects
expect during force-field adaptation by introducing inter-
mittent ‘force-channel’ trials, in which a robot arm only
allows subjects to make straight movements. These trials
reveal the lateral forces subjects plan before each move-
ment in order to counter the expected lateral velocity-
dependent forces imposed in previous and subsequent
trials. Sing et al. made the interesting observation that early
on in adaptation to viscous force-fields there are not only
the expected transient lateral forces midway through the

movement but also sustained lateral forces at the end of the
movement. This is surprising – why apply a lateral force at
the endpoint (static force tail) when there is no opposing
force (velocity is zero)? As adaptation proceeds the force
tails disappear and adaptation consists only of the transient
response. The same mixture of transient and static
responses is seen early on in adaptation to positional force
fields but then evolves, appropriately, to only the static
component. Thus subjects seem to adapt in a non-specific
manner in their early responses to perturbations and
become more task-specific later on. The explanation prof-
fered by the authors is that subjects have a distribution, in
position/velocity gain space, of motor primitives with cor-
related positional and velocity tuning. Such tuning has
been found in muscle spindle afferents and primary motor
cortex. A simple error-based learning rule selects those
primitives best tuned to the perturbation. The authors go
on to show that the model is able to predict those state-
dependent force fields that subjects will find easier or more
difficult to learn. The overall behavior ends up being
identical to a Bayesian model having a prior that assumes
that perturbations have correlated position and velocity
components. Another recent study [17] has shown evi-
dence for generic responses to perturbations of different
types that are presented in single randomly interleaved
trials. The interpretation offered, similar to that of Sing
et al. [16!!], is that the interleaved design, analogous to
early adaptation to a constant perturbation, does not allow
for estimation of the specific perturbation and therefore a
generic response is generated.

What determines how much adaptation to a particular
perturbation generalizes across the workspace? For
example, adaptation to visuomotor rotation shows limited
generalization whereas adaptation of gain (amplitude
scaling) generalizes broadly [18]. An upper bound on
generalization function width may be the result of fixed
neural tuning widths; indeed this has been argued
recently as the explanation for narrow generalization of
rotation adaptation [19]. Adaptation of gain (amplitude
scaling), by contrast, generalizes broadly across direction
for reaching movements [18], which raises the possibility
of a lower bound: a coarse neural representation of move-
ment amplitude, which would preclude learning two
different gains in close proximity. Pearson et al. found,
however, that this is not the case [20]: two gains in
different directions can indeed be learned through more
local generalization around each of the two training
directions. Specifically, the more local gain learning could
be explained by a weighted combination of single-gain
generalization patterns, in which the weighting takes into
account the relative angular separation between training
directions. This solution is consistent with a hierarchical
‘mixture of experts’ architecture [21].

More insight into the possible reasons underlying differ-
ences in rotation and gain generalization was provided by
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Liu et al. [22!] The cursor position depended on exper-
imenter-determined hand configurations recorded with a
cyberglove, that is, the mapping from hand-space to
cursor space was completely arbitrary and highly non-
linear. The idea behind the cyberglove paradigm is that
the transformations are being experienced by a naı̈ve
system and thus priors about gain (scaling) and rotation
would presumably not apply. Perturbations of scaling and
rotation were learned quite differently. Specifically, sub-
jects explored and acquired a new finger coordination
pattern for rotation adaptation but scaled their baseline
coordination pattern for gain adaptation, thus supporting
the idea that these two kinds of adaptation are compu-
tationally distinct [18]. Interestingly, however, both
rotation and gain adaptation generalized narrowly. How
is the narrow gain generalization seen for the cyberglove
reconciled with the broad gain generalization described
for arm movements? A clue comes from thinking about
the Liu et al. [22!] and Pearson et al. [20] studies together.
Perhaps the two-gain condition is analogous to the cyber-
glove: when the task space becomes complex and unfa-
miliar, generalization narrows to an upper, presumably
neural, bound. If this is correct then it suggests an
additional top-down mechanism that ‘surveys’ the task
space and applies a general rule if the rule is easily applied
to a familiar effector. Thus rotation might not generalize
even for the arm because although the effector is familiar
the rotation rule is not easily applied top-down. Note that
this interpretation is speculative and quite different from
the ‘mixture of experts’ argument given by Pearson et al.
[20] and the argument provided by Liu et al. [22!]. The
idea of a hierarchy whereby lower level building blocks
generalize narrowly and higher levels generalize broadly
bears conceptual familiarities to the notion of reverse
hierarchies in perceptual learning [23].

Beyond adaptation in error-based paradigms
Recent studies suggest that other learning processes are
active, in addition to adaptation itself, in error-based
paradigms. This is important to appreciate – the whole
brain is taking part in the experiment, not just the
cerebellum updating a forward model.

Use-dependent plasticity
It has recently been shown that repetition of a particular
reaching direction leads future movements to be biased
towards that direction [24!]. The term that has been used to
for these repetition-induced biases is use-dependent
plasticity. Diedrichsen et al. [25!!] used a redundant task
design to show that use-dependent plasticity and adap-
tation can occur simultaneously and in opposing directions
in the task-irrelevant dimension of an adaptation task.
Subjects were required to make a reach of specified ampli-
tude but, unbeknownst to them, their arm was incremen-
tally displaced laterally by a force channel applied by the
manipulandum. Interestingly, even though the lateral
movement was irrelevant to task completion, subjects

nevertheless biased their movements laterally when the
manipulandum was no longer applying a lateral force and
short-lived adaptation after-effects had washed out. Huang
et al. [13!] used a modified visuomotor rotation paradigm to
show that adaptation itself can act as a channel to induce
directional biases in the direction of the adapted move-
ment. Interestingly, the biases were larger in the setting of
adaptation than those observed in the study by Verstynen
and Sabes [24!], which suggests that use-dependent
plasticity can be modified by the implicit reward of suc-
cessful error reduction.

Success-based learning
Can a systematic perturbation be learned using scalar
reward rather than vector error? Izawa and Shadmehr
[26!] found that the answer is yes for visuomotor rotation,
albeit under very specific circumstances. A rotation was
introduced in 18 increments every 40 trials until it reached
88. One group received full cursor feedback and explicit
reward when they hit the target; the other group only
received explicit reward. Both groups updated their com-
mands by a similar amount and had a comparable amount
of total learning. The authors argue that the two groups
achieved the same performance in two qualitatively dis-
tinct ways based on two findings: only the group that
received error feedback showed evidence for a change in
the perceived position of their hand following a motor
command (adaptation of a forward model) and showed
broad generalization across directions. The group that
only received scalar reward as feedback used a trial-and-
error exploratory strategy, a strategy made possible by the
gradual nature of the perturbation so that the required
changes in movements largely occurred within the range
of baseline variability. Although it is unlikely that large
step perturbations could be learned with reward alone,
the study by Izawa and Shadmehr shows that reinforce-
ment learning, in some circumstances, can substitute for
adaptation when there is uncertainty about, or no, sensory
prediction error.

Huang et al. have recently suggested that even putatively
pure adaptation paradigms are in fact made up of multiple
distinct learning processes [13!]. Specifically, they
hypothesized that hitting a target, or even getting closer
to the target, is a form of implicit reward that leads to an
operant reinforcement process whereby successful error
reduction is associated with the commands, or move-
ments, converged upon by adaptation. Moreover, they
suggested that such model-free reinforcement is inde-
pendent of internal model-based learning (adaptation)
but that the two kinds of learning (model-free and model-
based) combine to cause savings (faster relearning). In
support of this idea, they showed that subjects could learn
a 308 clockwise rotation faster after first learning a 308
counter-clockwise rotation if adaptation to the two oppo-
sitely signed rotations converged upon the same move-
ment direction in hand space.
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Structural learning
Adaptation paradigms have also been used to provide
evidence for a new framework, albeit consistent with the
idea of modifiable priors, to explain learning-to-learn
(meta-learning) phenomena. Braun et al. [27!,28] pointed
out the important distinction between parametric learning
and structural learning. Parametric learning describes the
adaptation processes we described in the first section:
countering a perturbation through error-driven updates of
a parameterized model. Structural learning can be con-
sidered learning the covariance structure among these
parameters. For example, rotations and shears of a cur-
sor’s x,y position with respect to hand position can both be
represented by 2 by 2 matrices. Knowing exactly how the
entries of this matrix covary within each family of per-
turbations simplifies the decision of how to update the
entries of the matrix following a given observed error; this
dimensionality reduction allows an increase in learning
rate. From the Bayesian point of view this would corre-
spond to learning a new prior distribution on the
parameters of the perturbation. In support of the struc-
tural learning hypothesis, Braun et al. [27!] found that
learning a particular rotation is facilitated after experien-
cing a lead-in period of random rotations, which suggests
that the invariant feature during the lead-in period (the
fact that all perturbations were rotations) was successfully
extracted.

Optimization and skill
We recently defined skill change operationally as a shift
the speed-accuracy trade-off function (SAF) for a task
when no systematic perturbation is present [29!]. Adap-
tation to a perturbation,  by contrast, is not a skill
because subjects are knocked off their baseline SAF
but at best only return to it – their performance is not
better than baseline performance. The question is how
is skill, that is, improved performance captured as a
shift in the SAF, accomplished when there is no sys-
tematic change in the relationship between commands
and their sensory consequences?  Behavioral perform-
ance could be improved through better state estimation
(improved forward models, or improved processing of
sensory feedback), and/or through better motor execu-
tion (improved signal-to-noise  ratio in motor output).
Which of these processes is the rate-limiting step in
skill learning is unknown. It is interesting to note that if
skill could be attributed to improved state estimation
by a forward model, then this would suggest that
systematic changes in internal  models occur much
faster than improvements in the precision of these
models, given that skill learning takes much longer
than adaptation.

Optimal feedback control (OFC) [30] has proven a
comprehensive theory of motor coordination in redun-
dant systems [31–33,34!]. A cost function made up of
effort and accuracy terms can be optimized, assuming

that unbiased estimates of a number of crucial
parameters, including the parameters of a forward
dynamic model, are available a priori, to derive a feed-
back control policy for a given task goal. How does OFC
relate to skill learning? Nagengast et al. [35!!] addressed
how we learn to control complex objects with internal
degrees of freedom. For such objects, there is no simple
one-to-one correspondence between the state of the
hand and the state of the object. For example, how does
a cowboy, or Wonder Woman, learn to control a lasso? In
the study, subjects learned to control 6 simulated objects
with complex dynamics. They were trained with these
strange virtual objects and improved at meeting an
accuracy criterion even though they had to move pro-
gressively faster. The main result was that at the end of
learning the hand paths that subjects adopted for each
object were predicted by OFC using a simple cost
function. Thus the assumption was that the lead-in
training comprised adaptation – subjects first learn the
complex object dynamics and then model-based optim-
ization of a cost function occurs. But the lead-in training
phase was marked by an improvement in both speed and
accuracy, and therefore amounted to a shift of the SAF
for this task. Although this lead-in phase  was not the
focus of the study, the data suggest that one of two other
processes must also have been occurring in the training
period to lead to better performance: convergence on the
optimal policy, or improved execution of the control
policy itself, perhaps through an increased signal-to-
noise ratio via expanded neural representations.  Either
of these possibilities could be the explanation for shifts
in the SAF [29!] and reductions in variability  described
in motor skill learning studies [36,37]. We would suggest
that optimal behavior  is converged upon not only
through model-based mechanisms, but also through
model-free processes.

Interaction between implicit and explicit
processes during motor learning
Sensorimotor learning, in the form of mirror writing (a
form of adaptation), served as the prototypical instantia-
tion of procedural or implicit learning when it was shown
to be intact in the amnesic patient HM [38,39]. Having
lost explicit memory, HM did not recall having practiced
the motor task before but nevertheless showed motor
improvement over days. This very famous result has led,
however, to oversimplifications and misunderstandings.
That HM could not explicitly recall having done the task
does not imply that explicit processes were not used each
time he performed the task, that is, explicit memory and
explicit control processes are not synonymous. Adaptation
can indeed proceed entirely implicitly [3] but this does
not preclude the possibility that it could benefit from
explicit processes. Finally, as stated in the introduction,
adaptation should not stand in for all of motor learning;
what is true for adaptation may not be true for other forms
of motor learning.
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It is very unlikely that explicit and implicit processes do
not interact during motor learning; it is hard to imagine
that the prefrontal cortex would just stand by as motor
areas do the learning. Two ways can be envisaged for how
explicit cognitive processes could help motor learning.
One is the idea that an alternative explicit strategy might
be found to solve the learning task. The second, hitherto
less considered possibility, is that explicit cognitive pro-
cesses could augment implicit processes themselves.

Adaptation
A recent study by Taylor and Ivry [40!] further pursued
the finding that, at least initially, implicit rotation adap-
tation cannot be bypassed by an explicit strategy [3].
Their surprising finding was that even though an explicit
aiming strategy does indeed fail initially, at a certain
point, if learning is allowed to proceed for many more
trials, the strategy appears to win out over the implicit
adaptation process. The authors envisage two competing
processes captured by a two-state model – an implicit one
based on prediction error and an explicit one based on
target error. The model works by updating the aiming
strategy to match the implicit process. This is a very
strange and intriguing result as it suggests that an explicit
strategy over time can itself take on the features of an
implicit adaptation process.

Keisler and Shadmehr [41!] used an interesting approach to
examine whether declarative memory contributes to force
field adaptation. Subjects began by adapting to force field
A, then were briefly exposed to a counter force field B, and
then, after a 3-min interval, were exposed to a force
channel. Movements in a force channel reveal the lateral
forces that subjects have learned through adaptation. This
is the same paradigm as originally used to posit the exist-
ence of a fast and a slow adaptation component [4]. The
novelty was to have subjects memorize and recall 12 word
pairs in the 3 min interval between the end of B and the
channel trials. The result was that the channel trials only
showed evidence for slow A with no competing fast B (no
spontaneous recovery) – implying that the declarative
memory task interfered with memory of B. This result
on its face does suggest that a declarative memory task can
retrogradely interfere with recall of the fast process. It is
almost as if one cannot engage short-term memory and hold
on to a fast-adapted state simultaneously. This is an inter-
esting and somewhat surprising result but it is important to
be clear about what it does and does not mean. What the
result shows is that the fast process and working memory
may compete for a retrieval resource. It does not, however,
imply that the fast acquisition process is itself explicit.
Thus at this point in time there is no watertight evidence
that adaptation itself has an explicit component.

Skilled sequential movements
Sequence learning tasks have also been used extensively
to study motor learning. The most popular task is the

Serial Reaction Time Task (SRTT) [42]. This task has
been used to argue that sequence order can be learned
implicitly because onset times (reaction time (RT) plus
movement time (MT)) are gradually reduced when sub-
jects make sequential movements without explicit aware-
ness that a sequence is present. In a recent innovative
study, Moisello et al. took a critical look at the SRTT
using a reaching task that allowed them to break the onset
time measure into RT and MT [43!]. Their main surpris-
ing finding was that there was no evidence for implicit
learning of sequence order once one took account of
explicit awareness of sequence fragments and the non-
specific effect of practice on MT. This is a somewhat
heretical result but adds to already existing skepticism as
to whether purely implicit learning of sequence order is at
all possible [44].

Can explicit awareness of sequence order and declara-
tive memory enhance execution of sequence elements,
that is, is there a way in which knowing what you have to
do at the global task level improves the precision of
component movements that are already practiced to a
high level? Two recent studies suggest that the answer
to this question is yes. Ghilardi et al. [45] showed that
spatial accuracy was higher to an explicitly known well-
practiced target in an array of 8 targets when the order of
the other 7 targets was also known, compared to when
the order of these remaining targets still had to be
learned. Crump and Logan [46!] found that already-
skilled typists, using a familiar keyboard, showed a
difference on a sequence execution measure (interkey
stroke interval) if they were given a word that they had
recently seen before versus a new word. These results
are interesting because they go against the idea that as
tasks become well practiced and automatic, they break
free of explicit control. The possibility that explicit
cognitive processes can always enhance overlearned
skills suggests an interesting difference  between skill
learning and adaptation and raises the question as to
whether HM could have learned to type if he had never
done so before.

Conclusions
Motor learning is a general term that covers multiple
model-free and model-based learning processes that are
likely to be differentially weighted across tasks and
implemented by multiple functional and anatomical brain
modules (Figure 1). Specifically, motor learning, at the
very least, is made up of adaptation, use-dependent
plasticity, operant reinforcement, and explicit cognitive
processes. In this framework, it can be conjectured that
adaptation and skill learning tasks lie along a spectrum
with model-based processes prominent in the former and
model-free processes prominent in the latter. Further
elucidation of how these multiple processes interact in
more complex sensorimotor learning tasks is an exciting
direction for future research.
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